The basic algorithm for computing live
variables

For each basic block B, we want to determine

e LVin(B): the set of variables live right before B

e |Vout(B): the set of variables live right after B

(remember: “live” means having a potential use in the future)

e To compute these, we use two pieces of information from
B:
— USE(B): is the set of variable that are used in B before they ever get
re-written in B, i.e. having upwardly exposed uses.
— DEF(B): is the set of variables rewritten in B

Basic Equations

LVZ'.TL(B) — (LVOui(B) — DEF(B)) U USE(B)
LVOUt(B> - USESUC(:(B)LVin(S)

*If we have n basic blocks, then we have simultaneous equations over 2 *
n variables: LVin(B) and LVout(B) for all B.

*Borrow the idea from numerical algorithms, we can solve this iteratively
*DEF(B) and USE(B) are “constants”

eInitialize all LVin and LVout variables to empty sets.

Based on the basic flow equations given above, we initialize
LV_out(B) = LV_in(B) = empty for every basic block B

We then apply the basic equations to the basic block by
computing the right-hand side and then update the left-
hand side. When we reach the moment when no LV_out(B)
can be increased further, we have the final result

The order in which we visit and revisit basic blocks does
not change the final result, but may have an effect on the
efficiency of the algorithm, in terms of how many basic
blocks are re-visited.

The most straightforward implementation is to iterate over
all basic blocks

The following is the first example we worked on in class.

o |vse[pef [In jout|in Jout
1 a a,c a,c

2 a
3 b,c
4 b
5 a
6 C

a,c
b,c
b,c

a,c

?

b,c
b,c

a,c

a,cC
b,c
b,c

a,c

’

b,c
b,c

a,c

Example: 1

a
2
a <0 b:=
Li:b<—a+1 3
c<—c+b Es=
a «—bx2 4
ifa < N goto L, a:=
return ¢ -
a<N
6 /

return ¢

The table shows result in the first and
second (final) iterations. In each
iteration, we assume that we visit the
basic blocks from 6 to 1.

Purdue University is an Equal
Opportunity/Equal Access institution.

