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Introduction

• In the discussions on dataflow analysis so far, we 
have assumed that the code either contains no 
procedure calls or such calls bear no effect on the 
analysis.

• In practice, “call effects” often need be taken into account
• Take reaching definition as an example:

Suppose a is a global variable in C. Whether  a defined in d1 reaches the use 
in u1 depends on whether Foo() “kills” a. “Kill” is also known as must-
mod

a = b + c;              (d1)
Foo( );
d = a * s;              (u1)



Similarly, in the following example, whether  variable a
belongs to Live_in of Foo() depends on whether Foo() 
“kills” a. If there exists a possibility that a will not be 
modified by Foo(), even though there exists also 
possibilities that a may be modified by Foo(), then a is still 
conservatively considered to be in Live_in of Foo().

Foo( );
d = a * s;              (u1)



In-lining

• A straightforward method for handling calls is “in-lining”, 
i.e. substituting the call by the body of the called routine. 

• However, this method does not handle recursive calls 
properly.

• In-lining also increases the size of the routine to be dealt 
with by every dataflow analysis algorithm.

• In-lining duplicates the body of called routine for each place 
the routine is called.

• So, instead, we often want to analyze without in-lining.



Summary Analysis
• If Foo() does not call any other procedures, i.e. if Foo() is a 

“leaf” routine, then we can analyze Foo() first and see if 
Foo() kills a.

• How do we analyze this within Foo()? We need to analyze 
the “must-mod summary” for Foo(). Consider this flow 
analysis problem:

Forward propagation of mustmod_in (B) and mustmod_out (B) 
over all nodes B. (For simplicity assuming B contains a 
single instruction or statement.)

Assuming a single exit, mustmod_in(exit) will be the must-
mod summary for the entire Foo() routine.



• What should be our dataflow equations?
• What should be initial value for mustmod_out (B)
• Which node should be placed on the work list first?



Call chains
• Next, let us assume Foo() calls another 

routine Goo(), which is a leaf routine. In 
order to sumarize must-mod for Foo(), 
we need summarize must-mod for Goo() 
first. Suppose a node B in Foo() makes a 
call to Goo(). How should we propagate 
Live_in (B) to Live_out (B)?



– Next, let us assume there is a “call chain” such that 
Foo() calls Goo() calls Hoo() …. calls Zoo(), where 
Zoo() is a leaf routine.

• Obviously we should summarize must-mod in the 
reversed direction of the call chain.

• The call graph of a program represents the calling 
relationship among its routines. The basic call graph 
contains only one edge from a routine Foo()  to 
another routine Goo() even if Foo() may call Goo in 
multiple places, i.e. multiple call sites.

• If the call graph of a program is a DAG, then we can 
summarize must-mod in a reversed topological sort. 



Recursive Calls

• What if Foo() calls Goo() …. eventually calls Foo() 
again? How do we determine must-mod for each 
involved routine? 
– First, we need to make an assumption that 

recursive calls always terminate, i.e. there will be 
an end to a call chain at run time and the last 
routine called in this dynamic chain will make no 
further calls.



– In iterative propagation over the call graph, we 
will interleave intraprocedural must-mod 
analysis with interprocedural must-mod 
summary propagation:

• Initially all must-mod summaries are assumed to 
include all variables

• Every time intraprocedural must-mod is computed 
over a routine’s control flow graph, we check to see 
whether the routine’s must-mod summary is changed. 
If so, all callers of this routine must be analyzed 
intraprocedurally again for must-mod.



Traversal of the call graph which have cycles

• Find all strongly connected components and reduce each to 
a single “condensed node”, which results in a reduced graph

• Visit the reduced call graph in reversed topological order
• With each condensed node, we iterate until no must-mod 

information is changed.



• So far we have considered global variables only (assuming 
no aliases)

• Call-by-reference parameter passing introduces new 
difficulties

• A reference (i.e. a pointer) passed to a callee may result in 
the de-referenced variable (i.e. the variable pointed to) being 
modified. 
– Is the variable killed by the routine?

• We analyze the must-mod of the callee and see if the formal 
parameter belongs to must-mod. If so, the variable pointed 
to by the corresponding pointer argument is killed by the 
callee. 



The Issue of Aliasing

• The same variable may be pointed to by two arguments 
passed to a callee.

• Within the callee, it is possible that neither of the 
corresponding formal parameters belong to must-mod, but if 
viewed as the same variable, then it belongs to must-mod.

• A global variable might also has a pointer passed to the 
callee.

• This is called the aliasing issue.
• Numerous algorithms have been proposed to determine 

which variables are aliases in the same routine.



Assuming there is no aliasing, the must mod 
information can still be determined by our 
previous mechanism after introducing a actual-
formal argument mapping for each call site.

For a complete treatment of must-mod, see Meyer’s paper
For a relatively comprehensive treatment of may-mod, see 

Cooper and Kennedy’s paper


