
Graph Traversal for Flow Analysis

CS502
Compiler

What graphs?
• During intra-procedural flow analysis, we

propagate information through the flow graph
• During inter-procedural flow analysis, we need to

also propagate information through the call graph
• The order in which we traverse the graph can

have an impact on how fast the analysis
converges, i.e. reaches a fixed point that gives us
the final result

• To discuss graph traversal in flow analysis, we
begin by reviewing several basic graph algorithms
that are useful in compilers

Depth-first search
• Depth-first search (DFS) visits

nodes in the following
manner:

main {
counter = 1;
dfsearch(root);

}

function dfsearch(n) {
n->visited = true;
n->dfn = counter;
for each successor, s, of n,

if not s->visited {
counter = counter+1;
dfsearch(s);

}
}

NOTE: if an edge exists
from node a to node b, b
is called a successor of a.

• The number n->dfn is called the depth-first
number for node n.

• Notice that in routine dfsearch, the order in
which we choose a successor in the statement
“for each successor, s, …” is left unspecified. A
different choice may lead to a different depth-
first numbering

DFST

• Under a specific DF numbering, we can define
a spanning tree for the given graph, called
depth-first spanning tree, DFST.

• To draw the DFST under a specific DF
numbering, we insert a pseodo statement in
routine dfsearch(n), i.e.

• if not s->visited {
• draw edge (n, s)
• counter = counter+1;
• dfsearch(s); }

Edge classification under a DFST
• Given a specific DFST for rooted graph G, we

classify edges in G as follows:
– tree edges: edges in the DFST
– forward edges: all edges (a, b) such that b is a

descendant of a in DFST and (a, b) is not a tree edge
– retreating edges: all edges (a, b) such that a is a

descendant of b in the DFST; and
– cross edges: all edges not belonging to the above

• (In general, since dfn is non-unique, DFST is also
non-unique. Tree classification is valid only for
the specific DFST, in general.)

Traversal order
• When we apply a procedure to each node in a

graph G, there are two issues:
– The search order (the order in which we visit the

nodes)
– The traversal order (when do we apply the

procedure).
• The following traversal schemes are particularly

common:
– Preorder traversal: each node is processed before its

descendants, as defined by a specific DFST.
– Postorder traversal: each node is processed after its

descendants, as defined by a specific DFST.

Breadth-first search
• Sometimes breadth-

first search is useful

bfsearch{
counter = 1;
root->visited = true;
worklist = {root};
while worklist is

nonempty do {
remove first node, n,

from worklist;
n->bfn = counter;
counter = counter + 1;

for each successor, s, of n,
if not s->visited {

s->visited = true;
worklist = union

(worklist, s);
}

} \\ while
}
In the above, the “visited"
fields are assumed to have
initial value of false.

topsort

• If a flow graph is a DAG, then the nodes are
often processed by following a topological
sort, or a topsort, traversal

• In a topsort traversal, a node is always
processed before any of its successors.

• NOTE: In general, topsort is nonunique.

Relationship between traversals

• Given a DAG, G, clearly a post-order traversal
is not a topsort traversal

• But a pre-order traversal may also not
necessarily be a topsort traversal
– See an example

• How to we find a topsort traversal then?

Reversed postorder numbering (rPost numbering)

main {
counter = number_of_nodes;
dfsearch(root);

}

function dfsearch(n) {
n->visited = true;

for each successor, s, of n {
if not s->visited {
dfsearch(s);

}
n->rpost = counter;
counter = counter -1 ;

}

NOTE: n->rpost is called
the reversed post-order
number, or rpost
number of n

Rpost number is
assigned following a
postorder traversal of G
under a DFST

Properties of rPost numbering

• It maintains topological sort for any DAG, G
– If (a, b) is an edge in G, we have rPostNum(a) <

rPostNum(b)
– We leave the proof of this property as a homework

question

• It maintains the dominance relationship
– If a dom b, then we have rPostNum(a) < rPostNum(b)

• In the following we introduce the concept of
dominance relationship in a flow graph

Dominators and Postdominators

• In a flow graph G, if every path from the entry to
b must contain a, then a is said to dominate b,
written as a dom b.
– By definition, we have a dom a.

• If every path from a to the exit must contain b,
then a is said to be post-dominated by b, written
as b pdom a.
– In most literature, a is defined as pdom a.
– Hence, b pdom a in G if and only if b dom a in the

reversed graph of G.

The dominator tree

• The dominance relationship is transitive
• Hence the nodes in a flow graph G form a tree

under the dominance relationship
– Called the dominator tree, or the dom tree
– (a, b) is an edge in the dom tree if and only if a is

the immediate dominator of b
– Node a strictly dominates b, if a dom b, and a ≠ b

A simple algorithm to compute
dominators

• For each node n in flow graph G, initialize dom(n) = {n}?
Would this work?

• Until no change, do {
• For each n in G, do {
• Old_dom = dom(n)
• dom(n) ={n} ∪(⋂ 	ௗ௦௦	()݉݀)
• If Old_dom ≠ dom(n), set change to true
• }

• }
• Consider implementing this based on a worklist
• How do we prove that this will compute the exact DOM set

for each node? [This will be a thought exercise. We will
discuss again in the next lecture.]

Back edges
• If a b is an edge such that b dominates a (a and b

are not identical), a b is called a back edge
• A back edge must be a retreating edge regardless what

DFST we build for the given graph.
• A back edge uniquely defines a “natural loop”

– Textbook gives an algorithm to find all instructions
belonging to a natural loop

• Concepts of
– Structured programs
– Irreducible graphs
– Strongly connected components
– Cycles

