Graph Traversal for Flow Analysis



What graphs?

During intra-procedural flow analysis, we
oropagate information through the flow graph

During inter-procedural flow analysis, we need to
also propagate information through the call graph

The order in which we traverse the graph can
have an impact on how fast the analysis
converges, i.e. reaches a fixed point that gives us
the final result

To discuss graph traversal in flow analysis, we
begin by reviewing several basic graph algorithms
that are useful in compilers




Depth-first search

e Depth-first search (DFS) visits

nodes in the following
manner:

main {
counter = 1;
dfsearch(root);
}

function dfsearch(n) {
n->visited = true;
n->dfn = counter;
for each successor, s, of n,

if not s->visited {

counter = counter+1;
dfsearch(s);

}
}

NOTE: if an edge exists
from node ato node b, b
is called a successor of a.



e The number n->dfn is called the depth-first
number for node n.

e Notice that in routine dfsearch, the order in
which we choose a successor in the statement
“for each successor, s, ...” is left unspecified. A

different choice may lead to a different depth-
first numbering



DEST

 Under a specific DF numbering, we can define
a spanning tree for the given graph, called
depth-first spanning tree, DFST.

 To draw the DFST under a specific DF
numbering, we insert a pseodo statement in
routine dfsearch(n), i.e.
* if not s->visited {
e draw edge (n, s)
e counter =counter+1;
e dfsearch(s); }



Edge classification under a DFST

e Given a specific DFST for rooted graph G, we
classify edges in G as follows:

— tree edges: edges in the DFST

— forward edges: all edges (a, b) such that b is a
descendant of a in DFST and (a, b) is not a tree edge

— retreating edges: all edges (a, b) such that a is a
descendant of b in the DFST; and

— cross edges: all edges not belonging to the above
e (In general, since dfn is non-unique, DFST is also

non-unique. Tree classification is valid only for
the specific DFST, in general.)



Traversal order

e When we apply a procedure to each node in a
graph G, there are two issues:

— The search order (the order in which we visit the
nodes)

— The traversal order (when do we apply the
procedure).

 The following traversal schemes are particularly
common:

— Preorder traversal: each node is processed before its
descendants, as defined by a specific DFST.

— Postorder traversal: each node is processed after its
descendants, as defined by a specific DFST.



Breadth-first search

e Sometimes breadth-
first search is useful
for each successor, s, of n,

bfsearch{ if not s->visited {
counter = 1 s->visited = true;
root->visited = true; worklist = union
worklist = {root}; (worklist, s);
while worklist is }
nonempty do { } \\ while
remove first node, n, }
from worklist; In the above, the “visited"
n->bfn = counter; fields are assumed to have

counter = counter+1; jnitial value of false.



topsort

e |f a flow graph is a DAG, then the nodes are
often processed by following a topological
sort, or a topsort, traversal

* In a topsort traversal, a node is always
processed before any of its successors.

e NOTE: In general, topsort is nonunique.



Relationship between traversals

 Given a DAG, G, clearly a post-order traversal
is not a topsort traversal

e But a pre-order traversal may also not
necessarily be a topsort traversal

— See an example

e How to we find a topsort traversal then?



Reversed postorder numbering (rPost numbering)

main {
counter = number_of nodes;
dfsearch(root); NOTE: n->rpost is called
} the reversed post-order
number, or rpost
function dfsearch(n) { number of n
n->visited = true;
for each successor, s, of n { Rpost number is
if not s->visited { assigned following a
dfsearch(s); postorder traversal of G
} under a DFST

n->rpost = counter;
counter = counter -1 ;



Properties of rPost numbering

* |t maintains topological sort for any DAG, G

— If (a, b) is an edge in G, we have rPostNum(a) <
rPostNum(b)

— We leave the proof of this property as a homework
guestion

* |t maintains the dominance relationship

— If a dom b, then we have rPostNum(a) < rPostNum(b)

* |n the following we introduce the concept of
dominance relationship in a flow graph



Dominators and Postdominators

* |n aflow graph G, if every path from the entry to
b must contain a, then a is said to dominate b,
written as a dom b.

— By definition, we have a dom a.

* |f every path from a to the exit must contain b,
then a is said to be post-dominated by b, written
as b pdom a.

— In most literature, a is defined as pdom a.

— Hence, b pdom a in G if and only if b dom a in the
reversed graph of G.



The dominator tree

e The dominance relationship is transitive

* Hence the nodes in a flow graph G form a tree
under the dominance relationship
— Called the dominator tree, or the dom tree

— (a, b) is an edge in the dom tree if and only if a is
the immediate dominator of b

— Node a strictly dominates b, if adom b,anda#b



A simple algorithm to compute
dominators

For each node n in flow graph G, initialize dom(n) = {n}?
Would this work?

Until no change, do {
For each nin G, do {
Old_dom = dom(n)

* dom(n) ={n} U(Nyy predecessor p dom(p))
e [fOld_dom #dom(n), set change to true

}
J

Consider implementing this based on a worklist

How do we prove that this will compute the exact DOM set
for each node? [This will be a thought exercise. We will
discuss again in the next lecture.]



Back edges

If a 2 b is an edge such that b dominates a (aand b
are not identical), a =2 b is called a back edge

A back edge must be a retreating edge regardless what
DFST we build for the given graph.
A back edge uniquely defines a “natural loop”

— Textbook gives an algorithm to find all instructions
belonging to a natural loop

Concepts of

— Structured programs

— Irreducible graphs

— Strongly connected components
— Cycles



