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What graphs?
• During intra-procedural flow analysis, we 

propagate information through the flow graph
• During inter-procedural flow analysis, we need to 

also propagate information through the call graph
• The order in which we traverse the graph can 

have an impact on how fast the analysis 
converges, i.e. reaches a fixed point that gives us 
the final result

• To discuss graph traversal in flow analysis, we 
begin by reviewing several basic graph algorithms 
that are useful in compilers



Depth-first search
• Depth-first search (DFS) visits 

nodes in the following 
manner:

main {
counter = 1;
dfsearch(root);

}

function dfsearch(n) {
n->visited = true;
n->dfn = counter;
for each successor, s, of n,

if not s->visited {
counter = counter+1;
dfsearch(s);

}
}

NOTE: if an edge exists 
from node a to node b, b 
is called a successor of a.



• The number n->dfn is called the depth-first 
number for node n.

• Notice that in routine dfsearch, the order in 
which we choose a successor in the statement 
“for each successor, s, …” is left unspecified. A 
different choice may lead to a different depth-
first numbering



DFST

• Under a specific DF numbering, we can define 
a spanning tree for the given graph, called 
depth-first spanning tree, DFST.

• To draw the DFST under a specific DF 
numbering, we insert a pseodo statement in 
routine dfsearch(n), i.e. 

• if not s->visited {
• draw edge (n, s)
• counter = counter+1;
• dfsearch(s); }



Edge classification under a DFST
• Given a specific DFST for rooted graph G, we 

classify edges in G as follows:
– tree edges: edges in the DFST
– forward edges: all edges (a, b) such that b is a 

descendant of a in DFST and (a, b) is not a tree edge
– retreating edges: all edges (a, b) such that a is a 

descendant of b in the DFST; and 
– cross edges: all edges not belonging to the above

• (In general, since dfn is non-unique, DFST is also 
non-unique. Tree classification is valid only for 
the specific DFST, in general.) 



Traversal order
• When we apply a procedure to each node in a 

graph G, there are two issues:
– The search order (the order in which we visit the 

nodes)
– The traversal order (when do we apply the 

procedure).
• The following traversal schemes are particularly 

common:
– Preorder traversal: each node is processed before its 

descendants, as defined by a specific DFST.
– Postorder traversal: each node is processed after its 

descendants, as defined by a specific DFST.



Breadth-first search
• Sometimes breadth-

first search is useful

bfsearch{
counter = 1;
root->visited = true;
worklist = {root};
while worklist is 

nonempty do {
remove first node, n, 

from worklist;
n->bfn = counter;
counter = counter + 1;

for each successor, s, of n,
if not s->visited {

s->visited = true;
worklist = union 

(worklist, s);
}

}  \\ while
}
In the above, the “visited" 
fields are assumed to have
initial value of false.



topsort

• If a flow graph is a DAG, then the nodes are 
often processed by following a topological 
sort, or a topsort, traversal

• In a topsort traversal, a node is always 
processed before any of its successors.

• NOTE: In general, topsort is nonunique.



Relationship between traversals

• Given a DAG, G, clearly a post-order traversal 
is not a topsort traversal

• But a pre-order traversal may also not 
necessarily be a topsort traversal
– See an example

• How to we find a topsort traversal then?



Reversed postorder numbering (rPost numbering)

main {
counter = number_of_nodes;
dfsearch(root);

}

function dfsearch(n) {
n->visited = true;

for each successor, s, of n {
if not s->visited {
dfsearch(s);

}
n->rpost = counter;
counter = counter -1 ;

}

NOTE: n->rpost is called 
the reversed post-order 
number, or rpost
number of n

Rpost number is 
assigned following a 
postorder traversal of G 
under a DFST



Properties of rPost numbering

• It maintains topological sort for any DAG, G
– If (a, b) is an edge in G, we have rPostNum(a) < 

rPostNum(b)
– We leave the proof of this property as a homework 

question

• It maintains the dominance relationship
– If a dom b, then we have rPostNum(a)  < rPostNum(b)

• In the following we introduce the concept of 
dominance relationship in a flow graph



Dominators and Postdominators

• In a flow graph G, if every path from the entry to 
b must contain a, then a is said to dominate b, 
written as a dom b.
– By definition, we have a dom a.

• If every path from a to the exit must contain b, 
then a is said to be post-dominated by b, written 
as b pdom a.
– In most literature, a is defined as pdom a.
– Hence, b pdom a in G if and only if b dom a in the 

reversed graph of G.



The dominator tree

• The dominance relationship is transitive
• Hence the nodes in a flow graph G form a tree 

under the dominance relationship
– Called the dominator tree, or the dom tree
– (a, b) is an edge in the dom tree if and only if a is 

the immediate dominator of b
– Node a strictly dominates b, if a dom b, and a ≠ b



A simple algorithm to compute 
dominators

• For each node n in flow graph G, initialize dom(n) = {n}? 
Would this work?

• Until no change, do {
• For each n in G, do {
• Old_dom = dom(n)
• dom(n) ={n} ∪(⋂ 	ௗ௦௦	()݉݀ )
• If Old_dom ≠ dom(n), set change to true
• }

• }
• Consider implementing this based on a worklist
• How do we prove that this will compute the exact DOM set 

for each node? [This will be a thought exercise. We will 
discuss again in the next lecture.]



Back edges
• If a b is an edge such that b dominates a (a and b 

are not identical), a b is called a back edge
• A back edge must be a retreating edge regardless what 

DFST we build for the given graph.
• A back edge uniquely defines a “natural loop”

– Textbook gives an algorithm to find all instructions 
belonging to a natural loop

• Concepts of
– Structured programs
– Irreducible graphs
– Strongly connected components
– Cycles


