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Program Dependence

• To understand the dependence relationship in a 
program, it is best to first examine it from a 
program execution trace

• A program execution trace is the complete 
sequence of instructions executed under a 
specific input, associated with the memory 
locations and registers visited by each instruction
– An instruction may appear multiple times in the trace
– We differentiate different instances of the same 

instruction by a sequence number



Data dependences and control dependences

• If instruction A defines a value used by instruction B 
(i.e. def(A) reaches use(B)), we say B has a flow 
dependence on A, or in short B has a dependence on 
A. Or, B is dependent on A.

• Such reaching definitions define a fundamental 
dependence relationship among program operations
– It limits the freedom with which the operations may be 

reordered (or executed in parallel) for efficiency
– It can guide software fault localization

• Flow dependences are transitive:
• B is dependent on A, C is dependent on B C is dependent on A
• We say there is a def/use chain from A to C



Other types of (data) dependences
• The reordering or parallel scheduling of operations may also be 

constrained by two other types of dependences involving data, i.e. 
involving memory locations

• Anti dependences
– B is executed sometime after A
– A reads from a memory location m, and B writes to m
– We say B has an anti dependence on A, because

• Reordering A and B may cause A to read a wrong value
• Output dependences

– B is executed sometime after A
– both A and B writes to memory location m
– We say B has an output dependence on A, because
– Reordering A and B may cause m to get a wrong value (that will be 

used by some other operations)



Control dependences
• In addition to data dependences listed above, a 

program operation B may also have a control 
dependence on a branching operation A

• If A is the nearest branch operation before B and 
A has multiple branch targets 

• If changing the branch target for A may cause B 
not to be executed

• then we say B is control dependent on A, or B has 
a control dependence on A.

• Control dependences are transitive.



Dynamic Program Dependence Graph

• If we use a node to represent each instruction 
instance in the trace

• Use an edge to represent each dependence 
• We obtain a dynamic dependence graph for 

the program under the specific input
• A dynamic dependence graph can be 

prohibitively large
• In practice, we maintain a moving snapshot 

for a specific purpose



Static program dependence graph

• For compilers and software engineering tools, 
it is important to build a static view of the 
dependences
– Which takes all possible input into account

• In a (static) program dependence graph, each 
node represent all possible instances

• Each edge represents any possible edge 
between instances of two nodes under some 
possible input



Data dependences and control dependences

• If operation A defines a value that may be used by 
operation B (i.e. def(A) reaches use(B)), we say B has a 
flow dependence on A, or in short B has a dependence 
on A. Or, B is dependent on A.

• Such reaching definitions define a fundamental 
dependence relationship among program operations
– It limits the freedom with which the compiler can reorder 

the operations (for efficiency or for information hiding)
• Reordering includes parallel scheduling of operations

– It can guide software fault localization
• Flow dependences are transitive:

• B is dependent on A, C is dependent on B C is dependent on A
• We say there is a def/use chain from A to C



Other types of (data) dependences
• The reordering or parallel scheduling of operations may also be 

constrained by two other types of dependences involving data, i.e. 
involving memory locations

• Anti dependences
– There is a control path from A to B
– A may read from a memory location m, and B may also write to m
– We say B has an anti dependence on A, because

• Reordering A and B may cause A to read a wrong value
• Output dependences

– There is a control path from A to B
– both A and B may write to memory location m
– We say B has an output dependence on A, because
– Reordering A and B may cause m to get a wrong value (that will be 

used by some other operations)



Control dependences
• In addition to data dependences listed above, a 

program operation B may also have a control 
dependence on a branching operation A

• Intuitively, if A is the nearest branch operation 
that has a control path leading to B and A has 
multiple branch targets 

• If changing the branch target for A may cause B 
not to be executed

• then we say B is control dependent on A, or B has 
a control dependence on A.

• Control dependences are transitive.



Control dependences

• In a (static) control flow graph, what “the nearest 
branch” means is yet to be formerly defined.

• How do we make a formal definition for (static) 
control dependences? We have the following 
“preliminary” definition:

• Node a is control-dependent on node b iff
(1) a does not post dominate b (otherwise, no matter 
how control flows from b to exit, a will be executed)
(2) A path exists from b to a such that every node on the 
path (excluding b) must be post dominated by a



• NOTE 1: Condition (2) is used for finding the nearest branch operation for 
a, i.e. b. 

• NOTE 2: Condition (1) requires that a’s execution is affected by b’s branch 
target.

• NOTE 3: Unfortunately, Condition (1) prevents us from saying a being 
control dependent on a itself, in the case of a being a loop header: 
– In the following graph, according to the definition given above, we 

have b and c both control dependent on a, but a is not control 
dependent on itself.

– However, when we view the program trace, we see that a later 
instance of a should be considered to be control dependent on the 
most recent instance of a

– The static program dependence graph is intended to be the summary 
of all dependences collected from all possible dynamic dependence 
graphs. Hence the static dependence graph is supposed to have a 
being control dependent on a itself

– We need to augment the definition as follows.

A
B

C



Control dependences: 
A formal definition

• Node a is control-dependent on node b iff
(1) a does not strictly post dominate b (otherwise, no 
matter how control flows from b to exit, a will be 
executed)
(2) A path exists from b to a such that every node on the 
path (excluding b) must be post dominated by a

NOTE: The addition of word “strictly” will allow a to be 
control dependent on itself in the case of a loop, 
because  a never strictly post dominate itself, thus 
satisfying (1)



Post Dominator Tree for Determining 
Control Dependences

• The formal definition given above is not suitable 
as an algorithmic base for determining control 
dependences
– Because it would require enumeration of all pairs of 

nodes in the control graph, whose size is quadratic of 
the number of nodes

– We want to find an order to visit each node in the 
graph exactly once do compute control dependences

– The postdominator tree (pdom tree) is good for this 
purpose

• We show an example of pdom tree.



• An efficient algorithm for determining all control 
dependences given a control flow graph is based 
on the concept of post dominance frontier (PDF).

• First we will define the dominance frontier, DF.
• The PDF is simply the DF of the reversed flow 

graph
• Computing DF and PDF does not need to examine 

all paths, instead, it only examines the successors 
of a node of interest



Dominance Frontiers
• Definition (Dominance Frontiers):

– The dominance frontier of x is the set of nodes that are not 
strictly dominated by x but have some predecessor being 
dominated by x.

– Mathematically, the set is defined as
DF(x) = { y	|	(	∃	ݖ	 ∈ (ݕ)	ݎ݋ݏݏ݁ܿ݁݀݁ݎܲ such that x 
dominates z) & ݔ	ݏ݁݋݀	ݐ݋݊	ݕ݈ݐܿ݅ݎݐݏ	݁ݐܽ݊݅݉݋݀	ݕ	}

• The intuition: x “almost” dominates those nodes in DF(x)
• DF(x) contains the nearest merging point reached from x.
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Post-dominance Frontiers
• The post-dominance frontier of x is the set of nodes that are 

not strictly post-dominated by x but have some successor 
being post-dominate d by x. 

• Mathematically, we have

PDF(x) = { such that x post-
dominates z) and x

• The intuition: x “almost” post-dominates those nodes in 
PDF(x)

• PDF(x) contains the nearest “diverging points” that lead to x

Purdue University is an Equal 
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Theorem: y belongs to PDF(x) iff x is 
control dependent on y

• This theorem is based on the following 
lemma:

• x post-dominates some successor of y iff a non-null 
path p exists from y to x such that x post-dominates 
every node in p, except y.

• This lemma tells us for Condition (2) there is 
no need to examine all paths from y to x in 
order to compute control dependences. 

• It is sufficient to examine all successors of y
and their post dominance relationship with x



Proof of the lemma

• Suppose (y,z) is an edge and x post-dominates 
z, then pick any path from z to exit, it must 
contain x. Every node in this path must be post-
dominated by x. (Otherwise, there would be an 
escape path from z to exit not containing x.)

• Suppose a non-null path p exists from y to x
such that x post-dominates every node in p, 
except y, then take the first link (y,z) in this path. 
Obviously x post-dominates z.



• This lemma is from the paper titled
• “Efficiently Computing Static Single Assignment Form and 

the Control Dependence Graph” by Cytron, Ferrante , Rosen, 
Wegman, and Zadeck, TOPLAS 13(4), 1991

• The same paper adopts a new definition for 
control dependences based on the PDF theorem

• The original definition of control dependence is 
made in the following paper

• The Program Dependence Graph and Its Use in Optimization, 
by Ferrante, Ottenstein, and Warren, TOPLAS 9(3), 1987



Computing DF(x)

• We first examine whether any edge (x,y) exists such 
that x does not strictly dominate y.
– If so, by definition, y belongs to DF(x)
– We denote the set of all such y by DFlocal(x)

• Next, suppose x immediately dominates a set of 
nodes. For each of these nodes, z, we check each 
member y in DF(z). 
– If x does not strictly dominate y, then y belongs to DF(x)
– We denote the set of all such y by DFup(x)
– Note: this definition deviates from the original paper but 

we believe it is more convenient



Mathematically

• Definition: DFlocal (x) = {y Succ(x) | x does not 
strictly dominate y}

• Definition: DFup(x) = ⋃ 	ݕ	 	ݕ	 ∊ ௭	௜ௗ௢௠	௫(ݖ)	ܨܦ 	and	x	݀ݏ݁݋	ݐ݋݊	ݏtrictly	dominate	y}
• We claim

– DF(x) = DFlocal (x) DFup(x)
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Algorithm to compute DF(x) 
• The above lemmas give rise to the algorithm for 

computing DF:
• For each x in the bottom-up traversal of the 

dominator tree do
– DF(x) = 
– Step 1: For each y in Succ(x) do       /* local */

if x is not immediate dominator of y then
• DF(x) DF(x) ∪ ݕ

– Step 2: For each z that x immediately dominates, do
• For each y ∈ (ݖ)ܨܦ do          /* up */

– If x is not immediate dominator of y then DF(x) DF(x) ∪ {y}



Proving the correctness of algorithm

• Lemma: (ݔ)௟௢௖௔௟ܨܦ	ݏ݁ݐݑ݌݉݋ܿ	݄݉ݐ݅ݎ݋݈݃ܽ	݄݁ݐ	݂݋	1	݌݁ݐܵ
[proof]      Let (x,y) be an edge, x ≠ y, and x d݉݋	ݕ.	Then	x	must	be	the	immediate	dominator	of	y.
• [Implication] No need to search the dominator chain to 

establish that x does not dominate y in step 1
• Lemma: Step 2 of the algorithm computes DFup(x)
[proof] Every node y in DFup(x) will be added in Step 2, 
because if x does not strictly dominate y, then x does not idom y.

See next page
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Continue the proof
• Every node y added in Step 2 must belong to DFup(x). 

Otherwise, suppose y is in DF(z) such that x idom z, x does 
not idom y but x strictly dominates y (i.e. y does not 
belong to DFup(x)). There must be another node w such 
that x idom w, and w strictly dominates y.

• Now this is impossible, because since y is in DF(z), z must 
dominate a predecessor of y, which is not w. Hence there 
is a path, p2, from z to y containing no w.

• Since x idom z, w cannot dominate z. Hence there exist a 
path p1 from entry to z that does not contain w. 
Connecting p1 and p2, we find a path from entry to y 
containing no w, which contracts “w strictly dominates y”.

entry x

z

w y

p2
p2

p1



Proof that DF(x) DFlocal(x) U DFup(x)

• If y ∊	DF(x),	then	by	definition	x dominates	a	predecessor	z of	y.	We	want	to	prove	that	y	is	in	either	DFlocal(x)	or	DFup(x).
• Case	1:	y	=	x	=	z.	(x,x)	is	an	edge	and	x ∊	DFlocal(x).
• Case	2:	y	്	x	=	z,	then	(x,y)	and	x	does	not	strictly	dominate	y.	Hence,	y	∊	DFlocal(x)
• Case	3:	y	=	x	്	z.	Since	x=y	strictly	dominates	z,	z	cannot	strictly	dominate	x=y	(why?).	Hence	y	∊	DFlocal(z).
• Case	4:	y	്	x	്	z,	then	z	does	not	strictly	dominate	y	(otherwise	x	strictly	dominates	y,	a	contradiction).	Hence,	y	∊	DFlocal(z).	
• In	both	Cases	3	and	4,	there	is	a	dominance	chain	between	x	and	z	in	the	dom tree.	The	nodes	in	this	chain	will	appear	in	every	path	from	x	to	z.	No	node	in	this	chain	strictly	dominates	y	(otherwise	we	have	x	strictly	dominates	y).	Since	y	∊	DFlocal(z),	through	this	chain,	we	have	y	∊	DFup(idom(z)).	y	∊	DFup(idom(idom(z)),	…,	y	∊	DFup(x).	



Algorithm to compute PDF(x) 

• A direct translation of the algorithm for computing 
DF(x) yields an algorithm for PDF(x)

• For each x in the bottom-up traversal of the post-
dominator tree do
– PDF(x) = ∅
– Step 1: For each y in Predecessor(x) do       /* local */

if x is not immediate post-dominator of y then
• PDF(x) PDF(x) ∪ ݕ

– Step 2: For each z that x immediately post-dominates, do
• For each y ∈ (ݖ)ܨܦܲ do          /* up */

– If x is not immediate post-dominator of y then PDF(x) PDF(x) ∪ {y}



• It is possible for a node x to be control dependent on 
more than one branch nodes

• A simple example is the loop header, x, being control 
dependent on itself and on another branch, a,  that is 
“nearest” to the loop header, as in the following graph

x
B

C

a

y

• Examples that have no loops also exist, in which a 
node is control dependent on more than one 
node. We will present one in this lecture.



The program dependence graph
• In the program dependence graph, each node represents an 

operation in the program, and each edge represents a dependence.
• Often the kind of dependence (flow, anti-, output, control) is 

marked on the edge
• One can choose the granularity of the PDG, depending on the pur-
• pose of the analysis:

• It can be fine-grained, such that a node represents an ALU 
operation, a load or a store, a branch instruction

• It can also be coarse-grained, such that a node represents a 
function invocation.

• It can also be of a granule in between:
-- program statements
-- compound statements, e.g. loops
-- basic blocks


