The Program Dependence Graph

Control flow and control dependences

CS502 Compilers

Program Dependence

 To understand the dependence relationship in a
program, it is best to first examine it from a
program execution trace

* A program execution trace is the complete
sequence of instructions executed under a
specific input, associated with the memory
locations and registers visited by each instruction

— An instruction may appear multiple times in the trace

— We differentiate different instances of the same
instruction by a sequence number

Data dependences and control dependences

e [finstruction A defines a value used by instruction B
(i.e. def(A) reaches use(B)), we say B has a flow
dependence on A, or in short B has a dependence on
A. Or, B is dependent on A.

e Such reaching definitions define a fundamental
dependence relationship among program operations

— It limits the freedom with which the operations may be
reordered (or executed in parallel) for efficiency

— |t can guide software fault localization
 Flow dependences are transitive:

* Bis dependent on A, Cis dependent on B = Cis dependent on A
e We say there is a def/use chain from A to C

Other types of (data) dependences

The reordering or parallel scheduling of operations may also be
constrained by two other types of dependences involving data, i.e.
involving memory locations
Anti dependences

— B is executed sometime after A

— Areads from a memory location m, and B writes to m

— We say B has an anti dependence on A, because
e Reordering A and B may cause A to read a wrong value

Output dependences
— B is executed sometime after A
— both A and B writes to memory location m
— We say B has an output dependence on A, because

— Reordering A and B may cause m to get a wrong value (that will be
used by some other operations)

Control dependences

In addition to data dependences listed above, a
program operation B may also have a control
dependence on a branching operation A

If A is the nearest branch operation before B and
A has multiple branch targets

If changing the branch target for A may cause B
not to be executed

then we say B is control dependent on A, or B has
a control dependence on A.

Control dependences are transitive.

Dynamic Program Dependence Graph

If we use a node to represent each instruction
instance in the trace

Use an edge to represent each dependence

We obtain a dynamic dependence graph for
the program under the specific input

A dynamic dependence graph can be
prohibitively large

In practice, we maintain a moving snapshot
for a specific purpose

Static program dependence graph

 For compilers and software engineering tools,
it is important to build a static view of the
dependences

— Which takes all possible input into account

* |n a (static) program dependence graph, each
node represent all possible instances

 Each edge represents any possible edge
between instances of two nodes under some
possible input

Data dependences and control dependences

e |f operation A defines a value that may be used by
operation B (i.e. def(A) reaches use(B)), we say B has a
flow dependence on A, or in short B has a dependence
on A. Or, B is dependent on A.

e Such reaching definitions define a fundamental
dependence relationship among program operations

— It limits the freedom with which the compiler can reorder
the operations (for efficiency or for information hiding)

e Reordering includes parallel scheduling of operations
— |t can guide software fault localization
 Flow dependences are transitive:

* Bis dependent on A, Cis dependent on B = Cis dependent on A
e We say there is a def/use chain from A to C

Other types of (data) dependences

The reordering or parallel scheduling of operations may also be
constrained by two other types of dependences involving data, i.e.
involving memory locations

Anti dependences
— There is a control path from A to B
— A may read from a memory location m, and B may also write to m

— We say B has an anti dependence on A, because
e Reordering A and B may cause A to read a wrong value

Output dependences
— There is a control path from A to B
— both A and B may write to memory location m
— We say B has an output dependence on A, because

— Reordering A and B may cause m to get a wrong value (that will be
used by some other operations)

Control dependences

In addition to data dependences listed above, a
program operation B may also have a control
dependence on a branching operation A

Intuitively, if A is the nearest branch operation
that has a control path leading to B and A has
multiple branch targets

If changing the branch target for A may cause B
not to be executed

then we say B is control dependent on A, or B has
a control dependence on A.

Control dependences are transitive.

Control dependences

* |n a (static) control flow graph, what “the nearest
oranch” means is yet to be formerly defined.

e How do we make a formal definition for (static)
control dependences? We have the following
“preliminary” definition:

* Node a is control-dependent on node b iff

(1) a does not post dominate b (otherwise, no matter
how control flows from b to exit, a will be executed)

(2) A path exists from b to a such that every node on the
path (excluding b) must be post dominated by a

NOTE 1: Condition (2) is used for finding the nearest branch operation for
a,i.e.b.

NOTE 2: Condition (1) requires that a’s execution is affected by b’s branch
target.

NOTE 3: Unfortunately, Condition (1) prevents us from saying a being
control dependent on q itself, in the case of a being a loop header:

— In the following graph, according to the definition given above, we
have b and ¢ both control dependent on g, but a is not control
dependent on itself.

— However, when we view the program trace, we see that a later
instance of a should be considered to be control dependent on the
most recent instance of a

— The static program dependence graph is intended to be the summary
of all dependences collected from all possible dynamic dependence

graphs. Hence the static dependence graph is supposed to have a
being control dependent on a itself

— We need to augment the definition as follows.

) &

Control dependences:
A formal definition

* Node a is control-dependent on node b iff

(1) a does not strictly post dominate b (otherwise, no
matter how control flows from b to exit, a will be
executed)

(2) A path exists from b to a such that every node on the
path (excluding b) must be post dominated by a

NOTE: The addition of word “strictly” will allow a to be
control dependent on itself in the case of a loop,
because a never strictly post dominate itself, thus
satisfying (1)

Post Dominator Tree for Determining
Control Dependences

 The formal definition given above is not suitable

as an algorithmic base for determining control
dependences

— Because it would require enumeration of all pairs of

nodes in the control graph, whose size is quadratic of
the number of nodes

— We want to find an order to visit each node in the
graph exactly once do compute control dependences

— The postdominator tree (pdom tree) is good for this
purpose

e We show an example of pdom tree.

An efficient algorithm for determining all control
dependences given a control flow graph is based
on the concept of post dominance frontier (PDF).

First we will define the dominance frontier, DF.
The PDF is simply the DF of the reversed flow

graph
Computing DF and PDF does not need to examine

all paths, instead, it only examines the successors
of a node of interest

Dominance Frontiers

e Definition (Dominance Frontiers):

— The dominance frontier of x is the set of nodes that are not
strictly dominated by x but have some predecessor being
dominated by x.

— Mathematically, the set is defined as

DF(x)={y | (3 z € Predecessor (y) such that x
dominates z) & x does not strictly dominate y }

e The intuition: x “almost” dominates those nodes in DF(x)
e DF(x) contains the nearest merging point reached from x.

Purdue University is an Equal
Opportunity/Equal Access institution.

Post-dominance Frontiers

e The post-dominance frontier of x is the set of nodes that are

not strictly post-dominated by x but have some successor
being post-dominate d by x.

e Mathematically, we have

PDF(x) ={y | (3 z € Succ (y) such that x post-
dominates z) and x does not strictly post —
dominate y }

 The intuition: x “almost” post-dominates those nodes in
PDF(x)

PDF(x) contains the nearest “diverging points” that lead to x

Purdue University is an Equal
Opportunity/Equal Access institution.

Theorem: y belongs to PDF(x) iff x is
control dependent on y

e This theorem is based on the following
lemma:

e x post-dominates some successor of y iff a non-null

path p exists from y to x such that x post-dominates
every node in p, excepty.

e This lemma tells us for Condition (2) there is
no need to examine all paths from y to x in
order to compute control dependences.

e |tis sufficient to examine all successors of y
and their post dominance relationship with x

Proof of the lemma

e =»Suppose (y,z) is an edge and x post-dominates
z, then pick any path from z to exit, it must
contain x. Every node in this path must be post-
dominated by x. (Otherwise, there would be an
escape path from z to exit not containing x.)

e & Suppose a non-null path p exists from y to x
such that x post-dominates every node in p,
except y, then take the first link (y,z) in this path.
Obviously x post-dominates z.

 This lemma is from the paper titled

o “Efficiently Computing Static Single Assignment Form and
the Control Dependence Graph” by Cytron, Ferrante , Rosen,
Wegman, and Zadeck, TOPLAS 13(4), 1991

e The same paper adopts a new definition for
control dependences based on the PDF theorem

 The original definition of control dependence is
made in the following paper

 The Program Dependence Graph and Its Use in Optimization,
by Ferrante, Ottenstein, and Warren, TOPLAS 9(3), 1987

Computing DF(x)

 We first examine whether any edge (x,y) exists such
that x does not strictly dominate y.
— If so, by definition, y belongs to DF(x)
— We denote the set of all such y by DFiocal(x)
 Next, suppose x immediately dominates a set of
nodes. For each of these nodes, z, we check each
member vy in DF(z).
— If x does not strictly dominate y, then y belongs to DF(x)
— We denote the set of all such y by DFup(x)

— Note: this definition deviates from the original paper but
we believe it is more convenient

Mathematically

e Definition: DFiocal (X) = {y € Succ(x) | x does not
strictly dominate vy}

e Definition: DFw(x) =
Uy idom AV |y € DF (z) and x does not strictly dominate y}

e We claim
— DF(X) = DFiocal (X) U DFup(X)

Algorithm to compute DF(x)

e The above lemmas give rise to the algorithm for
computing DF:

 For each x in the bottom-up traversal of the
dominator tree do
— DF(x) =@
— Step 1: For each y in Succ(x) do /* local */
if X is not immediate dominator of y then
e DF(x) € DF(x) U {y}
— Step 2: For each z that x immediately dominates, do
e Foreachy € DF(z) do /*up */
— If x is not immediate dominator of y then DF(x) €< DF(x) U {y}

Proving the correctness of algorithm

e Lemma: Step1of the algorithm computes DF;,.,;(x)

[proof] Let (x,y) be an edge, x #y, and x dom y. Then x must
be the immediate dominator of y.

e [Implication] No need to search the dominator chain to
establish that x does not dominate y in step 1

e Lemma: Step 2 of the algorithm computes DFup(x)

[proof] = Every node y in DFup(x) will be added in Step 2,
because if x does not strictly dominate y, then x does not idomvy.

& See next page

Continue the proof

e <& Everynode y added in Step 2 must belong to DFup(x).
Otherwise, suppose y is in DF(z) such that x idom z, x does
not idom y but x strictly dominates y (i.e. y does not
belong to DFup(x)). There must be another node w such
that x idom w, and w strictly dominates y.

 Now thisis impossible, because since y is in DF(z), z must
dominate a predecessor of y, which is not w. Hence there
is a path, p2, from z to y containing no w.

 Since xidom z, w cannot dominate z. Hence there exist a
path p1from entry to z that does not contain w.
Connecting p1 and p2, we find a path from entry toy
containing no w, which contracts “w strictly dominates y”.

<D 0 "‘0
@

Proof that DF(x) € DFiocal(x) U DFup(x)

If y € DF(x), then by definition xdominates a predecessor zofYy.
We want to prove that y is in either DFlocal(x) or DFup(x).

Case 1: y = x = z. (x,X) is an edge and x € DFlocal(x).

Case 2: y # x = 7, then (X,y) and x does not strictly dominatey.
Hence, y € DFoca(X)

Case 3:y = x # z. Since x=y strictly dominates z, z cannot strictly
dominate x=y (why?). Hence y € DFca(z).

Case 4:y # x # z, then z does not strictly dominate y (otherwise
x strictly dominates y, a contradiction). Hence, y € DFlocal(2z).

In both Cases 3 and 4, there is a dominance chain between x and
z in the dom tree. The nodes in this chain will appear in every
path from x to z. No node in this chain strictly dominates y
(otherwise we have x strictly dominates y). Since y € DFlocal(z),
through this chain, we have y € DFup(idom(z)).y €
DFup(idom(idom(z)), ..., y € DFup(x).

Algorithm to compute PDF(x)

e Adirect translation of the algorithm for computing
DF(x) yields an algorithm for PDF(x)

e For each xin the bottom-up traversal of the post-

dominator tree do

— PDF(x) = @

— Step 1: For each y in Predecessor(x) do /* local */

if X is not immediate post-dominator of y then
« PDF(x) € PDF(x) U {y}
— Step 2: For each z that x immediately post-dominates, do
e Foreachy € PDF(z) do /* up */
— If x is not immediate post-dominator of y then PDF(x) €< PDF(x) U {y}

e |tis possible for a node x to be control dependent on
more than one branch nodes

 Asimple example is the loop header, x, being control
dependent on itself and on another branch, a, that is
“nearest” to the loop header, as in the following graph

) &

 Examples that have no loops also exist, in which a
node is control dependent on more than one
node. We will present one in this lecture.

The program dependence graph

 |nthe program dependence graph, each node represents an
operation in the program, and each edge represents a dependence.

e Often the kind of dependence (flow, anti-, output, control) is
marked on the edge

e One can choose the granularity of the PDG, depending on the pur-
e pose of the analysis:

e |t can be fine-grained, such that a node represents an ALU
operation, a load or a store, a branch instruction

e |t can also be coarse-grained, such that a node represents a
function invocation.

e |t can also be of a granule in between:
-- program statements

-- compound statements, e.g. loops

-- basic blocks

