
Department of Computer Sciences

Purdue University is an Equal Opportunity/Equal Access institution.

Redundancy Removal

CS502

Department of Computer Sciences

Source of Redundant Operations
• Redundant operations are mainly due to

– Low level operations exposed after high-level
program statements are translated

– A comprehensive program being “specialized” (as
the result of #define, e.g.)

– Just-in-time optimization (for mobile code)
exposes redundancies in a particular program
segment (when some variables have values
fixed).

Purdue University is an Equal Opportunity/Equal Access institution.

Department of Computer Sciences

Two main kinds of redundancy
• Common sub-expressions (CSE)
• Loop invariant expressions
• Constant expressions

– Constant expressions may lead to the
discoveries of “dead” branches
unreachable code

– There is a cycle between dead-code
discoveries and constant discoveries.

Department of Computer Sciences

• Suppose an operation f is performed at program point
p to evaluate an expression E. If we find out that no
matter how the program execution reaches p, the
value of E will have already been computed early on
by another operation, then the operation f is
redundant.
– We could simply copy the value computed early on

• It is important that the value of E is always available.
• We will look at an example.

Purdue University is an Equal Opportunity/Equal Access institution.

CSE Removal Based on
Available Expressions Analysis

Department of Computer Sciences

A Simple Example

Purdue University is an Equal Opportunity/Equal Access institution.

e:=b+c

b := 1
d := b+c

a := b+c

B1

B2 B3

B4 e:=t

b := 1
t := b+c
d=t

t := b+c
a:=t

B2 B3

B4

Department of Computer Sciences

“Deep” Analysis of CSE
• Conventional available expression analysis only

recognizes expressions that have the identical textual
form.

• There may be expressions that always have identical
values (if we interpret the symbolic values correctly)
but may not have identical textual forms
– Such expressions are called congruent

expressions
– Recognizing congruent expressions will expose

more available expressions
Purdue University is an Equal Opportunity/Equal Access institution.

Department of Computer Sciences

Purdue University is an Equal Opportunity/Equal Access institution.

j = 0;
L1: if j >= 100 goto L2

if (readB) goto L3
t0 = row * size
t1= t0 + j
t2 = t1 * 4
t3 = baseA + t2
v = mem[t3]
goto L4

L3: t4 = row * size
t5 = t4 + j
t6 = t5 * 4
t7 = baseB + t6
v = mem[t7]

L4: t8 = row * size
t9 = t8 + j
t10 = t9 * 4
t11 = baseC + t10
mem[t11] = v
j = j + 1
goto L1

L2:

\\Loop body is:
If readB

v = B[row,j] ;
Else

v = A[row,j] ;
C[row, j] = v;

row * size
is textually
identical in B3, B4
and B5.

t0+j, t4+j, t8+j are
congruent.

t1*4, t5*4, t9*4 are
congruent.

B0 B1

B2

B3

B4

B5

B6

B2

B1

B0

B3 B4

B5

B6

int B[size][size], A[size][size]

Department of Computer Sciences

Conventional Analysis of Available Expressions
(w/o recognizing congruent expressions)

• To simplify our notation, assume the expressions we consider
are in the form of x ⊕ y

• An expression x ⊕ y is available at a node n in the flow graph if,
on every path from the entry node of the graph to node n, x ⊕ y
(or one of its congruent expressions) is computed at least once
and there are no definitions of x or y since the most recent
occurrence of x ⊕ y on that path.

• We want to compute AEin(B) and AEout(B) for each basic block
B, which represent the sets of expression available on entry and
exit of B, respectively.

– AEin and AEout are sets of expressions in the form of x ⊕ y

Purdue University is an Equal Opportunity/Equal Access institution.

Department of Computer Sciences

Purdue University is an Equal Opportunity/Equal Access institution.

We first go through all basic blocks. For each block B, we establish two
pieces of invariant information, EVAL(B) and KILL(B):

•EVAL(B) is the set of expressions in the form of x ⊕ y within basic block
B such that neither x nor y is modified between the operation of x ⊕ y
and the exit of B.

•KILL(B) is the set of expressions outside B which become unavailable
after execution of B because at least one of the operands gets modified
in B.

In other words, any node that computes x ⊕ y generates {x ⊕ y}, and any
definition of x or y kills {x ⊕ y};

Department of Computer Sciences

Purdue University is an Equal Opportunity/Equal Access institution.

We have the following flow equations:

AEin(B) = ∩ j∈Pred(B) AEout(j)

AEout(B) = EVAL(B) U (AEin(B) - KILL(B))

Before we start iterating, AEout(entry) is initialized as an empty set and
AEout(B) is initialized to “all expression” for all other nodes B. (Why?)

The initial worklist contains successors of the entry if we use the
worklist approach for iteration.

Department of Computer Sciences

Common sub-expression
Elimination

Purdue University is an Equal Opportunity/Equal Access institution.

Given a flow-graph statement s : t ← x ⊕ y, where the expression x ⊕ y is
available at s, the computation within s can be eliminated.
Algorithm. Compute reaching expressions, that is, find statements of the
form n : v ← x ⊕ y, such that the path from n to s does not compute x ⊕ y or
define x or y.
Choose a new temporary w, and for such n, rewrite as
n : w ← x ⊕ y
n′ : v ← w
Finally, modify statement s to be
s : t ← w
We will rely on a later compiler pass called “copy propagation” to remove
some or all of the extra assignment quadruples.

Department of Computer Sciences

Recognizing Congruent Expressions
• Obviously textually identical expressions are not

necessarily congruent
– That is why we may kill an available expression when one of

the operands are modified
– To recognize congruent expressions, we assign each

definition of variable with “signature”
– D0: a +b has the signature (+,a,b)
– The defs of the same signature will have the same value

number
– In general a signature is of the form (op, sig1, sig2)
– In (+,a,b) above, a and b are assumed to have the “input”

values or the initial values of a and b respectively
Purdue University is an Equal Opportunity/Equal Access institution.

Department of Computer Sciences

Purdue University is an Equal Opportunity/Equal Access institution.

j = 0;
L1: if j >= 100 goto L2

if (readB) goto L3
t0 = row * size
t1= t0 + j
t2 = t1 * 4
t3 = baseA + t2
v = mem[t3]
goto L4

L3: t4 = row * size
t5 = t4 + j
t6 = t5 * 4
t7 = baseB + t6
v = mem[t7]

L4: t8 = row * size
t9 = t8 + j
t10 = t9 * 4
t11 = baseC + t10
mem[t11] = v
j = j + 1
goto L1

L2:

t0’s signature
(*, row, size) is
assigned a value
number, say e1. Row
is assumed to be of
the initial value, size
is a constant.

t4 and t8 have the
same value number
e1.

t1, t5 and t9 have the
value number e2,
with signature
(+,e1,j). (What is j?)

t2, t6, and t10 have
the value number e3,
with signature (*, e2,
4).

We can now
propagate AV in the
form of signatures.
Intersect, but no need
to kill the expression.

B0 B1

B2

B3

B4

B5

B6

B2

B1

B0

B3 B4

B5

B6

Department of Computer Sciences

How to recognize congruent expressions?

• Or, equivalently, how do we form signatures?
• This concerns transforming the program into

a static single assignment (SSA) form, such
that every use of a variable has a unique
reaching definition.

• SSA is critical to symbolic analysis of a
program

• We discuss SSA in a later lecture
Purdue University is an Equal Opportunity/Equal Access institution.

Partial redundancy removal

• A redundant expression might not be
available along every path reaching the
optimization target in the control flow

• Insert the evaluation of the expression
in the exposed path

• Avoid introducing new redundancy due to control flow not
reaching the optimization path

• There are difficult cases in which, to avoid introducing new
redundancy, branches may be duplicated to ensure correct def-use
chains

Constant Folding

• Example:
• #define chunksize 20
• #define buffersize 1000
• for (i=0; i<1000; i++) {

x = chunksize * i;
p = malloc(x*buffersize*size(node)); }

Loop invariant code motion

• If a loop contains a statement t← a ⊕ b such that a has the same value
each time around the loop, and b has the same value each time, then t
will also have the same value each time. We would like to hoist the
computation out of the loop, so it is computed just once instead of every
time.

• Example:

while (p!=NULL) {
i++;
compare(a, list.message[i].val);
p = list.message[i].sym_ptr; }

At the source level, one does not see redundant
operation repeating in this loop

But at 3AC level, to calculate the address of
list.message[i].val, the operations are

list_addr + message_offset +
(i*message_size+val_offset)*4

This equals list_addr + message_offset +
val_offset*4 + i*message_size*4

Exposing loop invariant operations

Handling the potential zero-trip case

Loop invariant code motion
• We cannot always tell if a will have the same value every time, so

as usual we will conservatively approximate. The definition d: t ←
a1 ⊕ a2 is loop invariant within loop L if, for each operand ai ,

1. ai is a constant,
2. or all the definitions of ai that reach d are outside the loop,
3. or only one definition of ai reaches d, and that definition is loop-

invariant.
The transformed code must preserve the def-use relationship. See the
next cases:

Sparse Conditional Constant Propagation

We study the issue of constant propagation and the use
of SSA for constant propagation, using an algorithm
due to Wegman & Zadeck [ACM TOPLAS 1991].)

What is constant propagation?

For each use of a variable, find out whether its value
remains constant no matter how the execution path
leads to this use. We also want to know that constant
value.

if i > m error();

Is m a constant? If so, what is it’s value?

Why Do We Care?

• Performance:

– If the constant is small enough, it can be embed-
ded within the instruction (immediate operand).
No load from memory is needed.

– Most scheduling problems can be made easier if
key parameters are know constant values.

• Simplifying the code:

– Constant propagation can expose dead code, code
segments which will never be executed. This re-
duces the code size.

Scope

• Here we consider scalar variables only.

• Assuming no aliases.

• At the end of constant propagation, each variable,
wherever it appears in the program, should be marked
either as constant or as nonconstant . In the ter-
minology of lattice theory , the nonconstant value is
called bottom.

• Thus, during the propagation, at any time, a vari-
able may be marked as one of the following: top,
constant, or bottom.

• The most interesting thing happens when informa-
tion from different execution paths converge. The
following lists a set of such meet rules.

a ∩ top → a
a ∩ bottom → bottom
constant ∩ constant → constant (if the values are equal)
constant ∩ constant → bottom (if the values are unequal)

Here top indicates that nothing is known about the
variable yet.

Expression Rules

Suppose a number of variables appear in a certain
basic block. Each variable has a certain marking at the
entry of the basic block.

• If a variable is not modified in the basic block, then
its marking is unchanged.

• If a variable is updated with the value of an expres-
sion, then

– if any variable in that expression has the bottom

marking, then the modified variable will also have
the bottom marking; (Are we potentially missing
any constants by doing this?)

– if all variables used in the expression are constants,
then the modified variable will also have the con-

stant marking, the constant value can be deter-
mined by evaluating the expression (i.e. by con-
stant folding);

– otherwise, the reassigned variable will have the
top marking.

Kildall’s Algorithm

Simple constants can be recognized by using Kildall’s
iterative propagation framework in a simplistic way:

• The condition expression of any conditional branch
is not examined. Hence, all branch targets are con-
sidered possibly taken. This is despite that possibil-
ity that the branch condition may be constant and
hence only one branch target is possible.

• Only one value for each variable is maintained along
each path in the program. (If a variable can have two
possible values, thus not a constant, then besides
being marked as bottom, the two possible values are
not recorded.)

All variables in all basic blocks are initially marked
as top, except for the start node in the CFG, in which
all variables are marked as bottom. We optimistically
assume all variables to be constant in all basic blocks
except the start node.

Since each variable can only have its lattice value low-
ered twice, each node may be visited at most 2V times,
where V is the number of variables.

The time required for Kildall’s algorithm is O(E×V)
node visits, and V operations during each node visit.
This results in a running time of O(E × V 2) in the
worst case. The space required is O(N × V).

Wegbreit [IEEE SE 1975] found that, by symboli-
cally executing expressions (including branch condition-
als) to recognize unexecutable flow edges, additional
constants, called conditional constants (CC), can be
discovered. The worst-case complexity for doing that is
also O(E × V 2).

W & Z’s CC algorithm [TOPLAS 91], here called
sparse CC algorithm, adopts Reif and Lewis Idea to
use def-use chains to propagate constants, instead of
propagating V variables through the flow graph.

Further, they use SSA to simplify the def-use chains
and examine branch conditions to catch many cases of
conditional constants.

A trivial example:

i ← 1
j ← 2

Example 1: if j = 2
then i ← 3

endif
... ← i

More realistic examples of conditional constants:

i ← 1
j ← 1

Example 2: if i = j
then i ← i+1

endif
... ← i

read(i)
j ← 2

Example 3: if i = j
then
... ← i

endif

In order to catch those more realistic conditional con-
stants shown in the last two examples, extra nodes are
inserted betwen a conditional which performs an equal-

ity test (e.g. i = j) and the conditional branch targets.

In each of these extra nodes, artificial assignments are
inserted to introduce def-use edges which can then be
examined during propagation. (e.g. i←− j)

Some terminologies

• An edge in the def-use chains is called a root edge

if the source of the edge is not the sink of any other
edge (e.g. x := 100).

• Each def or use side is marked by its level, which says
whether it is top, bottom, or a constant. Each site
known to be constant is also marked by its constant

value. Similarly each join node is marked by its level

and value.

• In order to differential symbolic values of variables, we can
first transform the program into a static single assignment
(SSA) form

• Recall that we motivated the SSA transformation when we
try to recognize congruent expressions

• SSA will be discussed in the next lecture
– Computation of SSA is based dominance frontiers

	redundancy.pdf
	opt-intro
	Const
	SSAmotivate

