An Example of Dead Code
Elimination Based on Program
Dependence Graph



A Definition of Dead Code

Dead code is the opposite of useful code

Useful code consists of useful operations which
are defined transitively as follows:

(i) Any operation that may be executed and, if
executed, will generate externally observable
effect (e.g. writing to a file) is useful. (NOTE: we
do not consider exceptions generated by
software errors, such as divided by zero, as
useful.

(ii) Any operation on which a useful operation
may depend is also useful



An Algorithm to Mark Useful
Operations

e The first step is to mark all reachable operations, i.e.
operations that are reachable from the program (or the
function, if we analyze intra-procedurally) entry point

— This can be done simply by performing a DFS from the entry

e The second step is to traverse all reachable operations and
mark those that generate externally observable operations
(NOTE: we assume the compiler has access to the definition

of all such operations.) Denote this set of useful operations,
So.

e We build the program dependence graph and mark all
operations that are reachable from operations in So, in
reversed direction of the dependence edges. These
operations, are the useful operations.



Notes

 We need to add the entry and the exit to the set
of useful operations.

 Operations not marked as useful are dead and
can be removed.

e |n the first step of our algorithm, the reachability
of operations can be flow-condition insensitive
(i.e. not examining the branch conditions) or
flow-condition sensitive

— The former may remove fewer dead operations than
the latter



A simple example

Sl.i<-1
S2.j<-2
S3.n<-4
S4.i<-i+j

S5. m<-j+1

S6. j<-j+2
S7.if j > n goto S4
S8. print(m)

NOTE:

After removing S4
Goto S4 must be
changed to goto
S5

Program Dependence Sub-Graph showing useful operations
Data dependence edge: —_—
Control dependence edge:



