
An Example of Dead Code
Elimination Based on Program

Dependence Graph
Zhiyuan Li

CS502

A Definition of Dead Code
• Dead code is the opposite of useful code
• Useful code consists of useful operations which

are defined transitively as follows:
• (i) Any operation that may be executed and, if

executed, will generate externally observable
effect (e.g. writing to a file) is useful. (NOTE: we
do not consider exceptions generated by
software errors, such as divided by zero, as
useful.

• (ii) Any operation on which a useful operation
may depend is also useful

An Algorithm to Mark Useful
Operations

• The first step is to mark all reachable operations, i.e.
operations that are reachable from the program (or the
function, if we analyze intra-procedurally) entry point
– This can be done simply by performing a DFS from the entry

• The second step is to traverse all reachable operations and
mark those that generate externally observable operations
(NOTE: we assume the compiler has access to the definition
of all such operations.) Denote this set of useful operations,
S0.

• We build the program dependence graph and mark all
operations that are reachable from operations in S0, in
reversed direction of the dependence edges. These
operations, are the useful operations.

Notes

• We need to add the entry and the exit to the set
of useful operations.

• Operations not marked as useful are dead and
can be removed.

• In the first step of our algorithm, the reachability
of operations can be flow-condition insensitive
(i.e. not examining the branch conditions) or
flow-condition sensitive
– The former may remove fewer dead operations than

the latter

A simple example

S1. i <- 1
S2. j <- 2
S3. n <- 4
S4. i <- i+j
S5. m <- j+1
S6. j <- j+2
S7. if j > n goto S4
S8. print(m)

S3

S7

S2

S5

S8

S6

n
j

j

m

Program Dependence Sub-Graph showing useful operations
Data dependence edge:
Control dependence edge:

NOTE:
After removing S4
Goto S4 must be
changed to goto
S5

