Dependence Analysis for Loop-
Level Parallelism

 For shared-memory parallel processing, we have a few
options:
— Write a “clean” sequential program as an operational definition
of the computational task

* Need compiler analysis of the program semantics and dependences to
generate a parallel version

— Write a sequential program annotated by parallelization
directives, e.g. OpenMP pragmas

— Write an explicit parallel program using threads or processes

e For OpenMP or explicit parallel programs, we need
compiler analysis to analyze parallel program semantics
and dependences (more difficult than sequential code, in

some sense)

Dependence Analysis on Loops in
Sequential Programs

The goal is to execute different iterations in
parallel

What are the constraints?

Control dependences
Whether variables can be “privatized”

Loop-carried data dependences due to shared
variables

Control Dependences

 Unless we know the number of iterations in
advance (no later than when the loop starts),
we need to postpone the start of a new
iteration until certain conditions are satisfied

— In the next example, where is the earliest decision
point?

while node {
// process node;

—~ node->datal=".. Tmp = node;
nod ata2 = Tmp->datal ..
? Tmp->data2 ..

node = node->next;

Control Dependences (Cont’d)

e If aloop has many possible exits, control
dependence can be more subtle

while continue {

if z continue = true
else continue = false;

if x break;

if y break;

Speculative iterations

 One can optimistically jump start an iteration

e Squash the iteration it turns out to be pre-

mature

— Was there any “visible” impact which must be

undone?

while continue {

node = node->next;

Count++;

}

If “node” is a dead value at the
end of the loop, but count is
not, then the jump started
iteration can safely continue up
to the point of “Count++”
operation

Loop-Carried Dependence

(Some of the slides are borrowed from Engelen at FSU)

for (i = 0; 1 < N; i++4)
S; ali+l] = alil + b[il
S; alll = al0] + bIO0]
S; al2] = all]l + bI1]
S; al3]l = al2] + blI[2]

e Statement S, in iteration/
has a flow dependence on
S, initeration /+1

* We also say that S, has a
flow dependence on itself
that is carried by loop i.

e Orsimply, S, has a loop
carried flow dependence on
itself.

e Orevensimpler, theiloop
has a loop-carried
dependence.

Ilteration Vector

e Definition
— Given a nest of nloops, the iteration vector 1 of a
particular iteration of the innermost loop is a
vector of integers
| = (i13 P Y
where I, represents the iteration number for the
loop at nesting level k

— The set of all possible iteration vectors is an
iteration space

Iteration Vector Ordering

 The iteration vectors are naturally ordered
according to a lexicographical order, e.g.
iteration (1,2) precedes (2,1) and (2,2) in the
example on the previous slide
e Definition
— Iteration | precedes iteration |, denoted | <|, iff
1) iI[1:n-1] <j[1:n-1], or
2)i[L:n-1] =j[Lin-]] andi_ <],

Loop Dependence

* Definition
— There exist a dependence from S, to S, in a loop
nest iff there exist two iteration vectors | and |
such that
1)1 <] and there is a path from S to S,

2) S, accesses memory location M on iteration |
and S, accesses memory location M on iteration |

3) one of these accesses is a write

An Example

51

for (i = 0; i < N; i++)

for (j = 0; j < N; Jj++
alil [j1 = aljl [i]

Does either the i loop or the j
loop have loop-carried
dependences?

Dependence Testing

* Assuming affine subscripts :
a,i;+a,i,+..+a. i +e
e Begin with single-dimension arrays.

Dependence Equation

A dependence equation
defines the access

for (i=0;i<N,i++)

5, alf(i)] = alg(i)]

requirement

To prove flow dependence:
for which values of < B is

f(a) = g(PB)
for (i=0;i<N, i++)
S, ali+l] = alil qoul = B has solution a.=-1

for (i=0;1i<N, i++)

S, al2*i+l] = al[2*i] ‘2*0”1

2*[3 has no solution

12

General Cases

Multiple dimensions = Multiple linear equations
Loop limits constrain the loop index values

Dependence directions also constrain the loop index
values (for loop-carried dependences)

Loop indexes have integer values

Therefore, the general model is integer linear
programming
— Integer programming also applies to cases in which loop

limits and subscripts contain linear expressions with non-
index variables.

— Many special-case linear systems exist, which can be
solved fast.

The Issue of Symbolic Terms

A dependence equation
defines the access

for (i=0;i<N,i++)

5, alf(i)] = alg(i)]

requirement

To prove flow dependence:
for which values of < B is
f(a) = g(PB)

for (i=0;i<N, i++)

S, ali+p]l = ali+q] ‘p #q?

' One way to find the answer is to substitute p
and g with their definitions
This motivates SSA (static single assignment)

14

Privatizing variables

* Inloops, especially loops in nonnumerical
programs, many variables are used for
intermediate results within each iteration

* In the parallel code, these can be

— allocated to the thread stack (explicit threading
code), or

— marked as threadprivate or task-private (in
OpenMP)

How to recognize privatizable variables

e Definition: upward-exposed reads

— If a read reference to x always follows a write reference
to x in the same loop iteration, this read reference is said
to be covered.

— If a reference is not covered, then it is said to be
upward-exposed.

while continue { while continue {
X=..; if cond x = ...;
If ...y =x+X; If...y=x+X;

// read x is covered // read x is not covered

} }

e Claim: If all read references to x in the loop are
covered, then x can be privatized in that loop.

 Note: read-only variables do not need to be

privatized to change parallelizability of the
loop

Compiler analysis for privatizable
variables

* For simple scalar variables, privatizability can
be conservatively approximated using
traditional compiler analyses for
— reaching definitions, or use

— variable liveness analysis

* Conventional compiler algorithms however do

not take the meaning of the if conditions into
account

while continue { Does cond2 imply cond1?

If condl x = ...;
If cond2 y = x+x;

}

Privatizable Arrays

Arrays may also be used to hold intermediate
results in a loop

Analysis of privatizability of arrays requires an
extension of the previous definition

Definition:

— |f a read reference to an array element always follows
a write reference to the same array element in the
same loop iteration, this read reference is said to be
covered.

— If a reference is not covered, then it is said to be
upward-exposed.

e Just like simply scalar variables, privatizability
analysis can be sharpened by analyzing the
meaning of IF conditions

lastprivate

e |fin the original loop, the final value of a
privatizable variable will be used after loop exits
(the variable is live at the exit), then the final

value must be copied out.

* Analyzing live scalar variable is a conventional
compiler analysis

* Analyzing live array sections is a more advanced
analysis

— It again uses the concept of covered array sections

e Any future references to any part of the array section being
considered are upward exposed to the exits of the loop

being considered.

