
• For shared-memory parallel processing, we have a few 
options:
– Write a “clean” sequential program as an operational definition 

of the computational task
• Need compiler analysis of the program semantics and dependences to 

generate a parallel version
– Write a sequential program annotated by parallelization 

directives, e.g. OpenMP pragmas
– Write an explicit parallel program using threads or processes

• For OpenMP or explicit parallel programs, we need 
compiler analysis to analyze parallel program semantics 
and dependences (more difficult than sequential code, in 
some sense)

Dependence Analysis for Loop-
Level Parallelism



Dependence Analysis on Loops in 
Sequential Programs

• The goal is to execute different iterations in 
parallel

• What are the constraints?
• Control dependences
• Whether variables can be “privatized”
• Loop-carried data dependences due to shared 

variables



Control Dependences

• Unless we know the number of iterations in 
advance (no later than when the loop starts), 
we need to postpone the start of a new 
iteration until certain conditions are satisfied
– In the next example, where is the earliest decision 

point?

while node {
// process node;
node->data1 = …
node->data2 = …
node = node->next;

}

?

Tmp = node;
Tmp->data1 ..
Tmp->data2 ..



Control Dependences (Cont’d)

• If a loop has many possible exits, control 
dependence can be more subtle

while continue {
…
if z continue = true
else continue = false;

…
if x break;

…
if y break;

…
} 



Speculative iterations

• One can optimistically jump start an iteration
• Squash the iteration it turns out to be pre-

mature
– Was there any “visible” impact which must be 

undone?

while continue {
…
…
node = node->next;
…
Count++;
} 

If “node” is a dead value at the 
end of the loop, but count is 
not, then the jump started 
iteration can safely continue up 
to the point of “Count++” 
operation



6

Loop-Carried Dependence 
(Some of the slides are borrowed from Engelen at FSU)

• Statement S1 in iteration i
has a flow dependence on 
S1 in iteration i+1

• We also say that S1 has a 
flow dependence on itself 
that is carried by loop i.

• Or simply, S1 has a loop 
carried flow dependence on 
itself.

• Or even simpler, the i loop 
has a loop-carried 
dependence.

for (i = 0; i < N; i++)
S1 a[i+1] = a[i] + b[i]

S1 a[1] = a[0] + b[0]
S1 a[2] = a[1] + b[1]
S1 a[3] = a[2] + b[2]

…



7

Iteration Vector

• Definition
– Given a nest of n loops, the iteration vector i of a 

particular iteration of the innermost loop is a 
vector of integers
i = (i1, i2, …, in)

where ik represents the iteration number for the 
loop at nesting level k

– The set of all possible iteration vectors is an 
iteration space



8

Iteration Vector Ordering

• The iteration vectors are naturally ordered 
according to a lexicographical order, e.g. 
iteration (1,2) precedes (2,1) and (2,2) in the 
example on the previous slide

• Definition
– Iteration i precedes iteration j, denoted i < j, iff

1) i[1:n-1] < j[1:n-1], or
2) i[1:n-1] = j[1:n-1] and in < jn



9

Loop Dependence

• Definition
– There exist a dependence from S1 to S2 in a loop 

nest iff there exist two iteration vectors i and j
such that

1) i < j and there is a path from S1 to S2

2) S1 accesses memory location M on iteration i
and S2 accesses memory location M on iteration j

3) one of these accesses is a write



10

An Example
• Does either the i loop or the j 

loop have loop-carried 
dependences?

for (i = 0; i < N; i++)

for (j = 0; j < N; j++
S1 a[i][j] = a[j][i]



11

Dependence Testing

• Assuming affine subscripts :
a1 i1 + a2 i2 + … + an in + e

• Begin with single-dimension arrays.



12

Dependence Equation
• A dependence equation

defines the access 
requirement

for(i=0;i<N,i++)

S1 a[f(i)] = a[g(i)]

To prove flow dependence:
for which values of α < β is

f(α) = g(β)

2*α+1 = 2*β has no solution

α+1 = β has solution α=β-1 

for(i=0;i<N,i++)

S1 a[i+1] = a[i]

for(i=0;i<N,i++)

S1 a[2*i+1] = a[2*i]



General Cases
• Multiple dimensions Multiple linear equations
• Loop limits constrain the loop index values
• Dependence directions also constrain the loop index 

values (for loop-carried dependences)
• Loop indexes have integer values
• Therefore, the general model is integer linear 

programming
– Integer programming also applies to cases in which loop 

limits and subscripts contain linear expressions with non-
index variables.

– Many special-case linear systems exist, which can be 
solved fast.



14

The Issue of Symbolic Terms
• A dependence equation

defines the access 
requirement

for(i=0;i<N,i++)

S1 a[f(i)] = a[g(i)]

To prove flow dependence:
for which values of α < β is

f(α) = g(β)

One way to find the answer is to substitute p 
and q with their definitions
This motivates SSA (static single assignment)

p ≠ q ?

for(i=0;i<N,i++)

S1 a[i+p] = a[i+q]



Privatizing variables

• In loops, especially loops in nonnumerical
programs, many variables are used for 
intermediate results within each iteration

• In the parallel code, these can be 
– allocated to the thread stack (explicit threading 

code), or 
– marked as threadprivate or task-private (in 

OpenMP) 



How to recognize privatizable variables

• Definition: upward-exposed reads
– If a read reference to x always follows a write reference 

to x in the same loop iteration, this read reference is said 
to be covered.

– If a reference is not covered, then it is said to be 
upward-exposed.

while continue {

x = …;

If … y = x + x;
// read x is covered

}

while continue {

if cond x = …;

If … y = x + x;
// read x is not covered

}



• Claim: If all read references to x in the loop are 
covered, then x can be privatized in that loop.

• Note: read-only variables do not need to be 
privatized to change parallelizability of the 
loop



Compiler analysis for privatizable
variables

• For simple scalar variables, privatizability can 
be conservatively approximated using 
traditional compiler analyses for
– reaching definitions, or use
– variable liveness analysis



• Conventional compiler algorithms however do 
not take the meaning of the if conditions into 
account

while continue {
…

If cond1 x = …;
…

If cond2 y = x+x;

}

Does cond2 imply cond1?



Privatizable Arrays
• Arrays may also be used to hold intermediate 

results in a loop
• Analysis of privatizability of arrays requires an 

extension of the previous definition
• Definition: 

– If a read reference to an array element always follows 
a write reference to the same array element in the 
same loop iteration, this read reference is said to be 
covered.

– If a reference is not covered, then it is said to be 
upward-exposed.



• Just like simply scalar variables, privatizability
analysis can be sharpened by analyzing the 
meaning of IF conditions



lastprivate
• If in the original loop, the final value of a 

privatizable variable will be used after loop exits 
(the variable is live at the exit), then the final 
value must be copied out.

• Analyzing live scalar variable is a conventional 
compiler analysis

• Analyzing live array sections is a more advanced 
analysis
– It again uses the concept of covered array sections

• Any future references to any part of the array section being 
considered are upward exposed to the exits of the loop 
being considered.


