Static Single-Assignment (SSA) Form

In pure functional languages, every variable is assigned
a value exactly once. In ordinary imperative languages,
a variable may be modified multiple times.

Recently, it was found that the single-assignment prop-
erty can greatly simplify data-flow analysis and various
compiler optimization algorithms.

Transforming a procedure to a pure single-assignment
form, unfortunately, would require excessive renaming.
A practical compromise is to settle for static single as-

signment (SSA).

With SSA, the internal representation of a procedure
is transformed such that each distinct static definition
of a variable is given a distinct name. Where two dis-
tinct definitions of the same variable meet at a join
point (through different execution paths), a ¢ function
is introduced to select from the two values and assign
the result to an artificially introduced definition.

The ¢ function is normally left uninterpreted. In the
program’s implementation, the two joined definitions
normally will have to be bound to the same memory
location. So, the SSA essentially serves only as an aid
to compiler analysis without known significance in the
actual execution of the program.

Under SSA, every static use of data has a unique
reaching definition.

Next we study an algorithm to translate a procedure
to minimal SSA form, i.e. an SSA form with a minimal
number of ¢ functions.

First, introduce the definition of dominance frontier
of a given flowgraph node z, written DF(x):

DF(xz) ={y | (3z € Pred(y)s.t.x dom z)&x 'sdom y}
(1)
NOTE 1: Recall that dom is reflexive, i.e. © dom =x.
NOTE 2: 'sdom means “does not strictly dominate”.
Informally, and somewhat sloppily, one understands
that y € DF(z) if “almost” dominates y.

The textbook presents an algorithm to compute DF'(z)
for all , based on the following equations:

DFjoeqi(t) = {y € Suce(x) | idom(y) # z} (2)

) DFyp(z,2z) ={y € DF(z) | idom(z) = x&z’dam(%)# z}

— DFU)
DF(SIJ) DFlocal(fE) U zEN(z’dOUm(z):a:) p(SIJ 2()4)

The above equations are turned into code for com-
puting DF(x) for all x.

Next, the definition of iterated dominance frontier
DF™() is defined as follows.

DF(S)= U DF(z) (5)
DF™(S) = limj_ooDF"(S) (6)
where DF1(S) = DF and DF*t1(S) = DF(S U

DF'(S)),

If S is the set of nodes that assign to variable x, plus
the entry node, then DF™(S) is exactly the set of
nodes that need ¢-functions for x. (Why is this so?)

