
Department of Computer Sciences

Purdue University is an Equal Opportunity/Equal Access institution.

Register Allocation by Graph 
Coloring

CS502



Department of Computer Sciences

Purdue University is an Equal Opportunity/Equal Access institution.

• We have used liveness information to construct an 
interference graph for register allocation.

• Optimal register allocation (allocating registers such 
that the number of memory references are 
minimized) is an intractable problem

• A common heuristic is based on coloring the 
interference graph
– This is an NP-hard issue

• A fundamental difficulty is that register spilling is 
almost inevitable in practice
– Which registers to spill depends on information that can only 

be “guessed”



Department of Computer Sciences

• We present the simplest form of graph-
coloring heuristic algorithms

• We illustrate how register spilling is 
handled and how it impacts on liveness
of variables

• We briefly discusses the issue of “pre-
colored” nodes in graph coloring.

Purdue University is an Equal Opportunity/Equal Access institution.



Department of Computer Sciences

Purdue University is an Equal Opportunity/Equal Access institution.

Example:



Graph coloring is a relatively simple method which
can be used for some of the scheduling problems, e.g.
for register allocation.

To apply graph-coloring to register allocation, we first
need to construct an interference graph, as discussed
in the last chapter.

Next, we color the interference graph using K differ-
ent colors, where K is the number of registers available
for allocation. No pair of nodes which are connected by
an edge may be assigned the same color.

3



If it is impossible to color the interference graph with
the given K colors, then we will have to keep some
of the values (represented by corresponding vertices) in
the memory (for at least part of their lifetime).

The compiler should generate the code such that a
live value will either reside in a register or in a mem-
ory location. Before the program overwrites a register
which stores a still-live value, that value must be saved
to a memory location.

This is called spilling the register, and the memory
location to save the spilled value called its spill loca-

tion.

4



Coloring by Simplification

For arbitrary graphs, coloring is an NP-complete prob-
lem. On the other hand, there exists a linear-time
heuristic method (known since 19th century) which is
based on simplification of the graph described as fol-
lows:

• Until the graph is empty, find a vertex, a, whose
degree is < K. Remove a from the graph and push
it to the coloring stack. (Some people propose that
the node with the lowest degree is removed.)

• If such a vertex cannot be found before the graph
becomes empty, then the simplification fails.

5



• Otherwise, the graph can be colored in K colors
by sequentially coloring the vertices popped off the
coloring stack.

The reason the last step mentioned above works is
because:

For any vertex m whose degree is < K, if the

graph G−{m} can be colored in K colors, then so

can G.

Let us use an arbitrary graph to illustrate the simplifi-
cation scheme, and see how many colors are needed to
successfully color this graph under the scheme.

6



If the simplification scheme fails, it does not mean
that a K-coloring does not exist.

An “optimistic” scheme (used by Briggs et al, 1989,
1994) continues to remove a vertex from the graph and
push it into the coloring stack. (Which vertex to remove
depends on how we define the spilling priority.)

During the coloring phase, we might still find it pos-
sible to color the graph with K colors.

Let us use another graph to illustrate this possibility.

7



If the optimistic scheme still fails, it still does not
mean that a K-coloring does not exist. However, to
simplify the solution, we will just assume that a K-
coloring does not exist and we resort to spilling.

Any vertex that cannot be successfully colored is put
in the spilling list. We continue to color the rest of
the vertices (just to see if there exist more spilled ver-
tices). When this is done, we need to modify the code
by inserting memory load and store instructions for the
spilled values.

8



The spilling code inserted above introduces more tem-
poraries with short live ranges. We re-draw the inter-
ference graph and re-apply the coloring scheme. We
iterate until we can color the modified graph with K

colors.
Let us use Graph 11.1, with K = 4 and K = 3

respectively, to show how the scheme works.9



The Spilling Cost

When choosing a vertex in the interference graph to
spill, the compiler needs to compare the spilling priority
among the possible candidates. Such a priority depends
on the spilling cost and the degree of the vertex in the
graph. Commonly, the vertex with the lowest value of

spilling cost

degree
(1)

is considered the best candidate for spilling.

1
0



A vertex with a high degree in the interference graph
is considered to be a good candidate for spilling because
its spilling may yield a better chance for the remaining
vertices to be colorable.

The spilling cost of a vertex is the performance penalty
paid at run time due to the decision to spill the corre-
sponding variable to the memory. Generally speaking,
the more often a variable is referenced at run time, the
higher its spilling cost.

1
1



Pre-colored nodes

Register-allocation schemes discussed above assume
that all hardware registers can be used in the same way.
However, as discussed in Chapter 6, different registers
can be assigned different roles in order to make function
call/return faster:

• A number of registers may be designated to pass
function arguments.

• One or two registers may be used to return function
value(s).

• A subset of the registers may be designated as saved
by the caller and the rest designated as saved by the

1
2



callee.

In order to use all registers as fully as possible, in
order to reduce memory references, we want almost all
registers be eligible for register allocation, (with a few
such as fp, sp and return-address register excluded).

On the other hand, we need to retain the special roles
of different registers. To do this, we add all registers
(which participate in register allocation) to the interfer-
ence graph and add appropriate edges to reflect the spe-
cial constraints. These vertices are called pre-colored.

• At the entry of the function, the registers which are
used to pass arguments should be copied to the for-

1
3



mal arguments. These registers are dead after the
copying is done, until some of these registers are used
to return function result(s).

• All callee-save registers are copied to new tempo-
raries. These registers then remain dead until the
new temporaries are copied back to them at the exit
of the function. The live range of those new tempo-
raries, therefore, expand nearly the whole function.

• Any CALL instruction is assumed to define all caller-
save registers. Therefore, a variable x which is not
live across any CALL will not interfere with any call-
save registers. However, if x is live across a CALL,

1
4



then it interferes with all caller-save registers. On the
other hand, x will also interfere with all those new
temporaries which are copied from callee-save regis-
ters, causing one of those temporaries to spill (be-
cause their spill priority is highest). This will cause
x to be allocated to a callee-save register.

• It is meaningless to select any pre-colored vertex to
spill, so we assign the lowest spilling priority to pre-
colored vertices.

We shall show how the interference graph is generated
for the example of Program 11.8.

1
5



In the discussion above, register copying is introduced in
many places. It is quite possible that some of them are
unnecessary. A technique called coalescing can be used
to eliminate unnecessary copying. Since this technique
is very specialized and there are other compiler tech-
niques which can achieve the same or better effect, we
will not discuss the coalescing technique in this course.1

6


	Registers.pdf
	13registers

