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2/1. (C/T) Clausius-Clapyron Verify the Clausius-Clapyron relation along the first order liq-
uid gas line that we obtained in the class for the system of interacting particles. (This is
your opportunity reproduce the results of class notes, using Mathematica or otherwise.)

2/2. (C) Virial coefficient: Consider the interacting particle model in d dimensions with a
potential of interaction

V(r) =

{ ∞, r < r0

−u0
(
r0
r

)α , r >= r0

For a given d, what is the range of α for which the second virial coefficient a2 is well
defined?

2/3. (C) Jellium, the classical variety: A famous model for a metal is the jellium model. The
metal is modeled as a “gas” of electrons of density n0 (let us focus on 3d - three spatial
dimensions), and the ions that make up the solid are considered as a “smooth jelly”
with the same density n0 – in other words, the ions “do nothing”1 except to provide
for a charge neutralising positive background charge density. In this problem we will
work out the classical version of this theory. The key question we ask is does the jellium
electrons have a gas-liquid transition, and if so what is the critical point.

(a) Write out the Hamiltonian of the jellium model and discuss its symmetries.

(b) Should we expect the jellium electrons to have a liquid phase?

(c) Using the procedure that we developed in class (and revisited in the previous prob-
lem 2/2), attempt to obtain the phase diagram. You should discover that the proce-
dure fails miserably! Connect the problems you encounter with the results of 2/2,
and argue that the long range nature of the Coulomb interaction is the cause of the
problem.

(d) Since electrons are very mobile, the long range nature of the Coulomb interaction
is mitigated by screening. To see best what this means, introduce an external test
charge of q into the system. Find out the the electrostatic potential of this charge
using the following steps.

i. Let the charge be placed at the origin. This will reorganize the electronic charge
density which becomes n(r). Write out an expression for the total charge density
nt(r) as a function of r.

ii. Let the electrostatic potential due to the test charge be φ(r). Use Poisson equa-
tion to relate φ(r) and nt(r).

1A concept that is very familiar to all of us.



iii. Now, define a local chemical potential µ(r) for the electrons. Argue that µ(r)
as r → ∞ goes to µ0 (the chemical potential of a non-interacting gas of elec-
trons with density n0 at temperature T ). Based on this result, show that µ(r) =
µ0 − eφ(r), where µ0 is the chemical potential of an ideal gas of electrons with
density n0 at temperature T .

iv. Next, relate n(r) to µ(r) using the ideal gas equation of state. Recall as shown
in class, for ideal gas with density n0 at temperature T , eβµ0 = λ3n0, this is what
you need to use in a “local” fashion. Now linearize this equation in φ(r) and
find a linear relationship between φ(r) and n(r).

v. Use the linear relationship obtained and show that the Poisson equation in
standard units reduces to

∇2φ+ ξ−2
D φ = −

q

ε0
δ(r)

where ξD is the Debye screening length. What is the expression for ξD?

vi. Solve the above equation and show that φ(r) ∼ e−r/ξD

r
, doing everything you

need to do to convert the ∼ to an =. This is the screened Coulomb interaction.

(e) Now use the argument that every electron behaves exactly as a test charge, and
produces a screened Coulomb potential. Using this screened interaction, obtain
the viral coefficient a2, and from there on the phase diagram.2

2/4. (C) Properties of Markov Matrix: Consider the Markov matrix W(n,m) introduced in
class. Let λ be a right eigenvalue of W. Show that |λ| 6 1. Comment on the nature of
eigen-probability distributions when λ = 1 and 0 < λ < 1. Can λ be complex? If yes,
what kind of distribution would that correspond to?

2/5. (C/T) Markov Muscle Flexing: Consider a set of 2 identical random walkers on a 3 site
lattice with periodic boundary conditions. A walker hops to the right with probability
p and to the left with q = 1 − p.

(a) Enumerate the states of the system (we will use symbols like m and n to count
them). The key here is to find a nice numbering scheme.3

(b) What is the size of the Markov matrixW(n,m)?

(c) Write out a Markov matrix describing the random walk process. Make sure that
your matrix you find satisfies the elementary properties of Markov matrices.

(d) Is this process irreducible? Justify.

(e) Find the right eigenspectrum of W(n,m), and the associated probability distribu-
tions.

(f) Discuss the physics of your solution for p = 1/2. What happens when p 6= 1
2?

2/6. (C/T) Monte Carlo time! Extend the code that you wrote in the previous assignment,
to perform Monte Carlo calculations of the 1D Ising chain. The code should use temper-
ature T , the uniform magnetic field h, number of sites N as inputs.

(a) Choose N = 100, and obtain the magnetization as a function of temperature at
h = 0 using Monte Carlo simulations. Are you surprised? What happens if you
choose N = 1000? What happens if you take larger number of Monte Carlo steps?

2I have not worked this out myself; there could be something to discover here! Moreover, understanding the
concepts of this problem is very important as it forms the basis of many things to come.

3Again, I have not worked this out myself.



(b) Find the spin-spin correlation function as a function of distance between the spins,
and obtain the correlation length as a function of temperature.

(c) Reconcile these results with the exact analytical results obtained in class.4

2/7. (C) Two-Site Ising: Consider a two-site Ising model with Hamiltonian H = −JS1S2.
Prove or disprove the statement: For J > 0, the magnetic susceptibility for a uniform
magnetic field (equal at both sites) is smaller than the case where J = 0. What is the
result for J < 0?

2/8. (C/T) Ferro and Anti-Ferro Ising: Prove or disprove the statement: The partition func-
tion of the ferro Ising model with a uniform magnetic field on a d-hypercubic lattice
H = −J

∑
ij SiSj − h

∑
i Si (J,h > 0 is equal to that of the anti-ferro Ising model (J < 0,

and of equal magnitude as the ferro) with the same uniform magnetic field.

2/9. (C) Argument shows no order in 2D Ising! A bright young student argues that the
square lattice Ising model is simply a liner chain Ising model that is “curled up”! She
says that if one traverses the path on a square lattice as shown in the figure, one sees a
linear chain!

Now the 1D Ising model does not have long range order at finite temperature, and
hence she insists that the result must be true for the square lattice Ising model as well!
She concludes that the square lattice Ising model also does not have long range order.
What is wrong with her argument?

2/10. (C) Long range interactions: Consider a 1d Ising chain with long range interactions
H = −1

2

∑
{i,j} JijSiSj where {i, j} is every pair of sites and Jij = J

|i−j|α
. This is a system

with long range spin interactions. Does the argument used to conclude that Ising model
has no long range order at finite temperatures hold for any α? Explore.

2/11. (C/T) Ising...on a ladder: Consider the Ising model on a ladder as shown in the figure.
The couplings on the legs and rungs of the ladder are indicated.

J1

J⊥

J2

4This is an opportunity for you to learn thoroughly the transfer matrix method for the 1d-Ising Model.



(a) Find a “clean” way to write out the Hamiltonian of this system.5

(b) Assuming J1 = J2 = J⊥, find out by qualitative arguments if system would order
below a finite temperature.

(c) Use the transfer matrix method to find the free energy of the system for any J1, J2

and J⊥. Does your answer agree with the result obtained by physical arguments
for the case discussed just above? Discuss.

(d) (C, and really C) Finding Effective Hamiltonians: Now let us keep J1 = J2 = J and
send J⊥ → ∞. Based on physical arguments, find the “low-energy” Hilbert space of
the problem, write out an effective Hamiltonian on this Hilbert space. Now use the
general result of the transfer matrix of the previous part when J⊥ →∞ (with J1 and
J2 fixed at J), and derive this effective Hamiltonian.

————— ? —————

5“Cleaness”, like cleanliness, is a subjective idea.


