(CS262 Lecture 02
Chapters 1&2

Zoran Duric

Department of Computer Science

MASON

UNIVER SITY

¢ see makefile and word-count.c

standard c libarary

assert.h //define macro assert

ctype.h //classify and transform individual characters
limits.h //defines the limits of integral types

float.h //describes the characteristics of floating types
math.h //trigonometric, exponential, logarithmic, ..
string.h //string, array and memory manipulation
stdio.h //file IO

stdlib.h //string conversion, random number,
memory management, searching, sorting,
termination

Outline

e variables
— types (int, char, float, double, enum, union, struct)
— type conversion
— array and char array (i.e. string)
— scopes (automatic, static, extern)

e functions
— parameters (caller), arguments (callee)
— call by value vs. call by reference

e operators (almost identical with java)
— arithmetic, bitwise, boolean,
— order of evaluation

enumerate (enum)

e enum bool {false, true};
— bool flag=false;

e enum error {no_error=1, io_error,
mem_error};
— €error msg=no_error;

e union package { int id; char type; };
— package a;
— usage: a.id=0; or
—a.type='c’;
— but not both!

array

very similar to java but there are some important
differences

int tmp[3];

int tmp[3]={0,0,0};

const int tmp[1={0,0,0};

tmp is a pointer to the first element of the array
cannot use variable to define the size of the array
— ex: you cannot say: int x=10; double tmp[x];
— this won’t compile, but you can say:

— #define x 10, then double tmp[x];

char array (string)

e ¢ has no string (class)

e a string is simply a “char array” with the last
element being null (‘\0’)

® &X:
— char msg[]="hello\n";

h|e|[l|1l]|o|\n|\O

— char msg[7]="hello\n"; //size 7 or larger

e see digit-count.c

function

e call-by-value
— the arguments are local variables whose values are
copied from the callers
— each function call allocates all these local variables
which are placed on the top of the call stack
— ex: long ans=fib(n); //in ex4.c

¢ variable n in main function and variable n in fib function
are different variables even though they have the same
value.

— ex: void swap(int a, int b); //won;t work
— void swap(int * a, int * b); //need to use pointers

function

* Since array variables are pointers so:
_ char A[]="GMU”, B[]="UMD";
— swap(A,B); //call by value
— void swap(int X[], int Y[I){...}
e X will have address A
¢ Y will have address B

e java is also “call-by-value” and “references” (i.e.
pointers) are passed when arguments are objects

— so, java does have pointers (references), but you
cannot manipulate them

e see longest-line-1.c

scopes

* scopes
— life span (global, local)
— visibility (static, extern)
e Life span
— variables outside all functions are global
variables (has life span of the program)

— variables inside a function is local to a function
call (does not span different calls) unless “static”
is used

e int foo(){ static int x=0; printf(“x=%d”,x++); }
e call foo multiple times will output different values

scopes

e Visibility (for global variables)
— similar to private, protected, public in java/c++

— static means “only visible to the file contains
that variable”

— extern means “visible to the entire program”

e this is default for all global variables

e see longest-line-1.c

Assignment

e see Lab02Spring12.txt

