(5262 Lecture 04
Chapter 5 Pointers

Zoran Duric

Department of Computer Science

IIIIIIIIII

The Anatomy of C Memory

e application's address space

— read only address
— read/write address | " ST
— aligned address
e multi-byte types |
— physical address Heap
Bss Uninitialized variables
Data Initiaized variables
0 Text Instruction
e unix like systems

The Anatomy of C Memory

FFFF FFFF

e application's address space
— read only address

— read/write address

TFFF 0000

—_ al igned add reSS Default System DLL Space

7000 0000

e multi-byte types

— physical address

Default User DLL Space

1000 0000

Initial Heap (grows up)

Stack (grows down)

Reserved Stack

* win32 systems []

3

Variables in Memory Map

// fixed address: visible to other files

int global_static;

// fixed address: only visible within file

static int file_static;

// parameters always stacked

int foo(int auto_param)

{
// fixed address: only visible to function
static int func_static;
// stacked: only visible to function
int auto_i, auto_a[10];
// array explicitly allocated on heap
double *auto_d = malloc(sizeof(double)*5);
// return value in register or stacked

return auto_i;

Pointer

A pointer stores an address in application's

address space

read “pointer” as “an address pointing to”

int i=5;
int* p= & I;

MAN, | SUCK AT THIS GAME.
CAN YOU GIVE ME
A FEW POINTERS?

0x3A28213A
0x6339392C,
OX 73636325.

| HATE YOU.

ast

Pointer

memory memory
0 0 e
1 1 3
2 2 E
3 3 2
2
: f «Q EE) %
printf(*%p”,p)
248,439 248,439
248,440 248,440
. Four bytes
al lgned 248,441 reservye'd for
248,442 "l‘e Vﬂl';?’ble i=5;
“i" ataddress
memory 248,443 248,440
248,444 248,444
address 240,404 Four bytes
. reserved for
248,446 the p:)lr:jt:r p=&i;
"p" at address
248,447 248,444
248,448
“p" holds the

address of “i*

Declare a Pointer

e examples
— int *i, j; //iis a pointer but j is just int
—inti, *j; //jis a pointer but i is not
— int *i, *j; // both i and j are pointers
—int ** i = &j; // whatis this?
— void * x=i;

int i=5;
int * p=&i;

p=10; // this means p has address 10
*p=10; // this changes the value at address p

Dereferencing

¢ see swap.c

Dereferencing

const

1.const int * p; //a pointer to const int
® *p=0; //wrong
® p=&i; p=&j; //OK

2.int const * p; //same as above

3.int * const p; //a const pointer to int
e *p=0; //OK
® p=&i; //wrong

Pointers and Array

char A[]="GMU”; //Al0]="g’" is allowed
char * A="GMU"; //ok, but A[0]="g" will crash

char * p=A; //array name is the pointer of its firs
element

p=&A[0]; //same as above
p=&A; //same as above

Pointers and Array

e char a_messagel] = "now is the time"; /* an array */

now is the time\0

e char * p_message = "now is the time"; /* a pointer*/

®

now is the time\O

Multi-Dimensional Array

e /* strcpy: copy t to s; array subscript version */
e void strcpy(char *s, char *t)
|
» inti=0;
» while ((s[i] = t[i]) !="\0") i++;
°}

Pointers and Array

* /* strcpy: copy t to s; pointer version */

e void strcpy(char *s, char *t)

° {

°}

» while ((*s = *t) 1="\0")

» {

b}

pS++; t++;

Pointers and Array

e void strcpy(char *s, char *t) { while(*s++ = (*)++) ; }

Multi-Dimensional Array

char * B[]1={"Hello”,”World"}; //array of char *
char C[2][3]; //array of char with 6 elements
(char *) * p=B; //OK

char ** p=C; //wrong

char * p=&C[0][0]; //OK

char * p=C; //same as above

void bar(char * foo[]){...}
bar(B); //OK
bar(C); //wrong!, void bar(char foo[1[3]) or bar(char *);

char * D[]=B; //wrong, char * D[]={"A",”B",”C"} or char
** D=B

Multi-Dimensional Array

e char * name [] = {“lllegal month”, “Jan”, “Feb”,
.
Mar }/ name:

—» I1legal month\O |

e char name[][15]= {“lllegal month”, “Jan”,
“Feb”, Mar”};

aname:

name[0][1]="¢c’;

r11

Illegal month\0 Jan\0 Feb\0 Mar\0

0 15 30 45

Multi-Dimensional Array

e int void main(int argc, char ** argv)
— >echo hello world (run command echo)

argv:

11

Multi-Dimensional Array

e Practice: write a program to do this:

—— jklmnopqrst |

jklmnopqrst |

11
t

Pointer and Array

e There are differences between A (array)
and p (pointer)
— you can’t assign values to A but can do so to p
* A=p; //wrong
— sizeof(A) gives you the size of the entire array
— sizeof(p) gives you the size of a pointer
— p++ is allowed, but A++ is not

Pointer and Array

e char A[]I="GMU”;

e char * p=&A[1];

® printf(“Y%c”,pl-11);

e what has been printed? G

9.

O N O U1~ W N =

Operation Cost

. Integer arithmetic

Pointer access

Simple conditionals and loops

Static and automatic variable access
Array access

Floating-point with hardware support
Switch statements

Function calls

Floating-point emulation in software

10. Malloc() and free()

11. Library functions (sin, log, printf, etc.)

12. Operating system calls (open, brk, etc.)

A less costly

VW more costly

