
CS 262, Fall 2014, All sections
Project #1 (100p)

Due date: Wednesday Oct. 1 at 11:59pm

Your first project will be to write a C program to solve the n-Queens problem. The
objective is to place n queens on a n × n chess board: no two queens are allowed to be in
the same row, column, or a diagonal.

You can represent a board configuration with a simple n-element array {c0 c1 · · · cn−1};
ci corresponds to the column position of ith queen in row i. For example, {0 2 1 3} would
correspond to the 4 queens in positions (0, 0) (row 0, column 0), (1, 2) (row 1, column 2),
(2, 1) (row 2, column 1), and (3, 3) (row 3, column 3). Note that in our representation we
do not use row indexes: the ith queen is placed in the ith row and its column index is ci.

There are multiple ways to solve this problem. The simplest one would be to generate all
possible configurations and check if they solve the problem. Note that there are nn possible
configurations that would need to be checked. You can do better if you realize that you only
need to check permutations of numbers 0, . . . , n−1 as possible configurations. (Why?) Note
that in the case of the 4 queens that would be 256 possible board configurations, but there
are only 24 permutations; you can verify that there are just 4 legal 4-queen placements.
However, the method for generating all possible permutations is somewhat involved; it is
much easier to generate random permutations as was done in Lab. #4.

Your assignment is to write a program to solve n-queens problem for n = 4, . . . , 20 using
random board configurations. You should use your randperm function from Lab. #4. In
addition, you will write two additional functions: check board for checking if a permutation
solves the problem, and displayboard for printing a solution. Finally, for each board size you
should solve the problem 10 times so that you can obtain some statistics on performance of
your program.

Detailed requirements:

0. You will seed the random number generator using srandom(seed), where seed ={last
4 digits of your G#}.

1. You will use your void randperm(int b[], int n) size function from Lab. #4 to generate
random boards. Note that you only need to initialize b[] once for each board size.

2. Write
int checkboard(int b[], int n)

checkboard returns 1 if the board represented by b[] solves n-queens problem, it returns
0 otherwise.

3. Write int displayboard(int b[], int n)
displayboard prints a solution of n-queens problem in an easy to check form. Here is a
possible way your output should look for n = 6.

[4 2 0 5 3 1]

- - - - * -

- - * - - -

* - - - - -

- - - - - *

- - - * - -

- * - - - -

4. For each board size n = 4, . . . , 20 you will run your program 10 times to collect some
statistics on its performance. For each n you will calculate min, max, and mean
number of random boards generated until a solution was found. To calculate mean
value for any board size you need to add up the total number of boards generated for
that size and divide it by 10. To calculate the min and max values you can utilize the
following macros:

#define max(a,b) \

({ __typeof__ (a) _a = (a); \

__typeof__ (b) _b = (b); \

_a > _b ? _a : _b; })

#define min(a,b) \

({ __typeof__ (a) _a = (a); \

__typeof__ (b) _b = (b); \

_a < _b ? _a : _b; })

The TAs and instructors will explain their purpose and use.

5. You will run your program for board sizes n = 4, . . . , 20 ten (10) times. You will display
the first solution only using displayboard. You will display the following statistics for
each size n: min, max, and mean number of boards generated before a solution was
found, nn and n!. You can use integers to calculate min and max values but you need
to use floats or doubles to calculate the remaining three values. Here is an example
output:

size min max mean size**size size!

4 1 52 1.6e+01 2.6e+02 2.4e+01

5 1 24 1.1e+01 3.1e+03 1.2e+02

6 9 773 1.5e+02 4.7e+04 7.2e+02

7 1 340 1.1e+02 8.2e+05 5.0e+03

8 45 1508 4.7e+02 1.7e+07 4.0e+04

9 3 2115 9.3e+02 3.9e+08 3.6e+05

10 375 17827 4.3e+03 1.0e+10 3.6e+06

11 109 49104 1.8e+04 2.9e+11 4.0e+07

12 354 158594 4.3e+04 8.9e+12 4.8e+08

13 15554 420771 1.1e+05 3.0e+14 6.2e+09

14 5042 1212410 2.8e+05 1.1e+16 8.7e+10

15 14734 3133599 7.2e+05 4.4e+17 1.3e+12

16 248658 6873571 1.9e+06 1.8e+19 2.1e+13

17 144108 8658763 1.9e+06 8.3e+20 3.6e+14

18 368100 29683930 9.5e+06 3.9e+22 6.4e+15

19 113601 47524247 1.6e+07 2.0e+24 1.2e+17

20 429506 202384581 6.6e+07 1.0e+26 2.4e+18

Instructions for submission:

1. Use script do show your session in which you compile and run your code for various
values of n. You should show testing of your functions.

2. Use tar or zip command to create an archive of your script file, your fully commented
source code, and your Makefile.

3. Submit your tar or zip file on Blackboard.

