
CS262 Lecture 05
Chapter 5 Pointers 2

Zoran Duric
Department of Computer Science

!

Address Arithmetic

• When p points to an element of an array
– p++ moves the pointer to the next element
– p-- moves the pointer to the previous element

!
• A[i]==*(A+i) //i-th element of A

!
• int * p1=0; p1++; //what is the value of p1

• long * p2=0; p2++; //what is the value of p2

2

Address Arithmetic

• int A[100]

• A+i, contains the address &A[0]+i*sizeof(int)

3

Address Arithmetic

• short A[100]
• A+i, contains the address &A[0]+i*sizeof(short)

4

Address Arithmetic

• By reversing the process, we can retrieve
the index

• int A[100];
• int * p=&A[10];
• int x=(p-A);

– x is 10

5

Address Arithmetic

• You can make pointer point to any address
• int A[10];
• int * p=A+10000; //won’t crash
• *p=0; //crash, because of dereferencing

6

Bus Error• bus error
– access a physically impossible address
– access an address that is not aligned
!

• see bus_err.c

7

Segmentation Fault

• segmentation fault
– access read-only address
– access private address
– stack overflow (depends on the level of

optimization)
!

• See seg_fault.c, seg_fault2.c, overflow.c (try
-O2 and without -O2)

8

Dynamic Memory Allocation

• void * malloc(# of bytes)
– to create a dynamic array with n integer

elements
– the address to the first element is returned
– when there is not enough space, null is returned

• int * A=(int *)malloc(sizeof(int)*10);
– this creates an array with 10 integers

• when A is no longer used, deallocate A
– free(A);

9

Dynamic Memory Allocation

• common errors
– char * A=malloc(1024); free(A+1); //crash
– free(A); free(A); //crash
– int A[10]; free(A); //crash
– int * p=malloc(4); int * q=p; free(q); free(p)

• same as the second case but much more common
when p get passed around

– int A[10]; int * p=A; free(p);
• same as the third case but much more common

when p get passed around

10

Dynamic Memory Allocation

• void * calloc(# of element, # of bytes)
– equal to malloc((# of element)x(# of bytes))

• int * A=(int *)calloc(10,sizeof(int));
– this creates an array with 10 integers

11

Other Related Functions

• void * realloc (void * p, long n);
– expending or reducing allocated memory block pointed by

p to n bytes

– The content of the memory block is preserved

– if p is null, realloc acts like malloc
– if n==0, realloc acts like free

• void * memset(void * p, int v, long n)
– Sets the first n bytes of the block of memory pointed by p to

the specified value v

• void * memcpy (void * B, const void * A, long n);
– Copy n bytes of the block of memory pointed by A to the

memory block pointed by B

• memset and memcpy are usually faster than using for-loop
12

final note

• in many cases, your code crashes due to
incorrect memory access earlier in the
code.
– This makes debugging much harder

13

