
CS 262, Fall 2014, All sections
Project #2 (100p)

Due date: Wednesday Oct. 29 at 11:59pm

In your second project you will implement singly linked lists in C. You will the use your
implementation to write a program that creates a representation of a deck of cards and
makes a random shuffle of the deck. The algorithms for implementing linked lists will be
discussed in your classes. Therefore, this description does not list implementation details of
the required functions.

Detailed requirements for linked lists implementation:
You will need to write several functions.

0. To represent a node in a linked list you can use a structure

struct Node {
SomeDataType data;
struct Node *next;

}

where SomeDataType can be any C data type.

1. Write a function to make a new list. Your function should create a dummy head node
to represent an empty list.

struct Node *newList(void) // returns a head of a new empty list

2. Write functions to insert elements into a list and to delete elements from a list

struct Node *delete(struct Node * prev); // deletes the node after prev
struct Node *insert(struct Node *prev, SomeDataType data)

// inserts a new node with data field data after prev

3. Write functions to count the number of elements in a list without the head and to print
the list

int length(struct Node *head) // number of elements in the list
void printList(struct Node *head) // print the data fields for the entire list

Note that printList will print the linked list implemented to support the second part
of your project.

In the second part of your project you will write functions to manipulate a deck of cards. You
should assume that a full deck contains 52 cards: card values (A,2,3,4,5,6,7,8,9,10,J,Q,K)



in four suits (Spades,Diamonds,Hearts,Clubs). You can use either integers or enums to repre-
sent cards and suits, but you should print card values using their symbols (‘A’,‘2’,. . . ,“10”,‘J’,‘Q’,‘K’)
and the suits using first letter of their name. Examples: (10,S),(A,C),(7,D) to stand for 10
of spades, ace of clubs, and 7 of diamonds.

Detailed requirements for deck of cards manipulation:
You will write a function to make a deck and a function to shuffle a deck of cards. To make
a deck you loop through card values and suits and create pairs of values to represent the
cards; those pairs are then inserted into the list representing the deck. To shuffle the deck
you will write a random shuffle method that works as follows.

struct Node *randomShuffle(struct Node *olddeck) // returns new deck
{

int len = length(olddeck)
Make a new linked list newdeck
for (int i=len-1; i>=0; i- -)
{

j = random()%(i+1)
move the jth card from olddeck to the front of newdeck

}
return newdeck

}

You can use delete and insert functions to move the cards from deck to another. If you
know how to do it you can just move a node while setting all links properly.

Instructions for submission:

0. To test your linked list code you should generate 10 random numbers in the range
[0..1000] and insert them in a ascending order into an empty list. Every time you
generate a number you need to traverse the linked list and find a proper place for the
number to be inserted. This means that you should not sort numbers before
insertion. You should calculate the list length and print it together with the list after
each number insertion. Note that for this part to work your data field should be of
type int.

1. When you are sure that your linked list functions work properly you should modify the
code to perform the second part of the project. For this you should create new files
and keep the basic working linked list version around. Note that for this part to work
your data field should be a structure or array with two values, one for a card value and
one for its suit.

2. Use script do show your session in which you compile and run your code for both part
#1 and part #2 of the project.

3. Use tar command to create an archive of your script file, your fully commented source
code, and your Makefile. You should follow these naming rules:



(a) Name your c source file as
<your email account> <your class section #> project2.c
For example, cliu6 section001 project2.c

(b) Name your script as
<your email account> <your class section> project2
For example, cliu6 section001 project2
If you used other name for the script, change it by using unix command mv.

(c) Your Makefile should include clean as well. Makefile name is still Makefile.

(d) Use tar cvf to compress all files including source code, Makefile and script to
<your email account> <your section> project2.tar.
NOTE: DO NOT compress the folder. PLEASE compress files directly.
For example, if all your files are in directory ./Project2. You do the following
steps:

> cd ./Project2

> tar cvf cliu6 section001 project2.tar <related file names> or
> tar cvf cliu6 section001 project2.tar * (* means all files in this directory)

(e) Double check that you followed the above procedures before you submit the com-
pressed tar file.

4. Submit your tar file on Blackboard.


