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Generative Story of Speech

P(w)

Language Model: Pronunciation Model:

Let’s meet

Probability Distribution
today

over Word Sequences

Trigrams %
L EH T S M IY T
ASR T UH D EY

w* =argmax Pr(wla) Acoustic Model:
Probabilistic Mapping

Mapping from Words to
Pronunciations

P(b|w)

= argmax , P(w)" P(alw) Speech

from Phones to
= argmax,, P(w)" Y P(alb)P(blw) P(a|b) Acoustics
b

3-state HMMs,
Iw = weight given to language model one HMM per triphone




Acoustic Model

HMM for a single triphone (e.g. AE in the context B-AE-D)

P(end|end

P(mid|beg) P (end |mid)

P(a,,a,,.a,|beg B-AE-D)

Emission :
—_ : a, a, | Observations: | a;
probabilities given )

. a, a, | Acoustic a,
by a Gaus.5|an, as a; | feature as
parametrlzed by d a4 a4 vectors a4
mean and
covariance

Each acoustic feature vector is computed from a
25 ms time slice of speech, every 10 ms (overlapping)



Pronunciation Model

DREAD
DREADED
DREADFUL
DREADFULLY
DREADING
DREADNOUGHT
DREADS
DREAM
DREAMED
DREAMER
DREAMERS

O O o o o o o o o oo
A X O X O X O O X O XD

EH
EH
EH
EH
EH
EH
EH
IY
IY
Y
IY

= 2 & ® U U U U U oo

IH D
F AH L

F AH L TY

IH NG
N AO T

ER
ER Z

Fancier versions:
multiple pronunciations
per word, with probabilities



Language Model

Trigrams over words
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HMM for the word “ban”

Look up pronunciation dictionary and string
the triphone HMMs together

AN A

beg mid end
#-B-AE #-B-AE #-B-AE

beg mid end
B-AE-N B-AE-N B-AE-N
beg end
AE-N-# AE-N-#



HMM for a sentence

String word HMMs together using language model
n-gram probabilities

HMM for “the” > HMM for “ban”
P(ban|the)

Use appropriate
triphones at the
beginning and end.
Also model silences.



One gigantic HMM

Triphone HMMs combine to form
Word HMMs which combine to form
Sentence HMMs

Desired result: best sequence of words that
produced speech

Find the best path through the HMM states
using Viterbi



One gigantic HMM

* Desired result of ASR: best sequence of words
that produced speech

* Find the best path through the HMM states
using Viterbi
— Can be prohibitively expensive in memory and
timel

— Constrain Viterbi by doing beam search: prune a
certain number of low probability states at each

time step



Training

* Language Model: Train n-grams from text just
as usual (aiming for the appropriate domain)

* Pronunciation Model: usually a dictionary

* Acoustic Model:
— Train from a large corpus of speech and word-
level transcriptions
— Unknown: transition and emission probabilities of
triphone HMMs
— Learn these probabilities with Expectation
Maximization



What are the acoustic features?

 Formants for vowels are a good start

* How do we extract formants?

* Think back to source-filter model: vocal cords
produce complex wave, vocal tract shapes
filter them according to resonances
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Source interaction with Filter

* Sopranos singing at high frequencies

 Harmonics are spaced too far apart to hit the
resonant frequencies



Acoustic Features

e Compute spectrum for a given time window by
taking the Fourier transform of speech wave
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Acoustic Features

* By source-filter model, this is a convolution of
the voice E and the tract H

* Spectrul

Only want H[k]
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Acoustic Features

e Spectrum X[k] = E[k] * H[k]
* Take log X[k] for two reasons:

—Intensity variation is more on log scale than
Inear

— Allows us to write the convolution as a sum

log X[k] = log E[Kk] + log H[k]



Acoustic Features

 We see log X[k], and want to compute this
separation to get log H[k]

* Play a neat trick: treat log X[k] as wave and
take the inverse Fourier transform
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Acoustic Features

* Play a neat trick: take the inverse Fourier
transform of log X[k]

* Transform ends up separating low and high
frequency regions

0 1000 2000 S000

Low Frequency E[K] High Frequency H[k]



Acoustic Features

* One last step: human ear does not perceive
frequencies linearly

* We are less sensitive to differences in high
frequency ranges than in low ranges

* By running perceptual experiments, we come
up with the “Mel scale”:

f_, =2595 log,,(1+f/700)



Acoustic Features

* Map the extracted cepstral peaks onto the
Mel scale

* Take the highest 13 peaks
—More or less correspond to formants

—2-3 peaks may be enough for vowels, but
we need the remainder for consonants,
resistance to noise, etc.



Acoustic Feature Extraction: Recap

* Divide speech signal into 25 ms windows,
every 10 ms (overlapping windows)

e At each window:

Fourier Log
Wave | 1 ansform > Spectrum o8 > Spectrum
Mel Frequency Cepstrum :
Fourier
Cepstral Mel (Spectral Transform

Coefficients Envelope)
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More Phonetics

—_
b

o o o o o o o o o o o o [ o
o VL ] u o o o o o u o u ] u
o™ o™ (ep) ey - - w o w0 [fu] - - w0 o]
[ ] 1 ] [ ] [ ] [ ] [ ]
[ [ ' [ ' [ 1 [ ' [ ' [
1 ) 1 ) 1 ) 1 1 1 ) 1 )
' [ ' [ [ [ ' [ ' [ [ [
| I o om0 e e i, e, o "l A om0 e i 3 o e
1 ' ) ) 1 ) 1 ) 1 ) 1 )
[ [ ' [ [ [ ' [ ' [ [ [
' [ ' [ [ ' [ ' [ ' [
1 ) 1 ) ) ) 1 ) 1 )
I dew “ “ ||| decccslenenbecndecanchescslcncdencabnccdeaccsckheaaa
' ' [ [ [ [ 1 [ 1 [
1 1 ‘ 1 ) 1 ) 1 ) 1 )
] * ] ' ] ' O ' [ ] ] '
[ [ ' [ ' [ [ [ ' [
L Lllll-llllPllll-llllrlllLIlllrlllFllDlllrlllkllllrlll
1 [ 1 [ [ [ 1 [ . [ ' [
' [ ' [ ' [ , [ [ ' [
) ) U- ) 1 ) 1 ) ’ ) 1 )
' [ [ [ [ [ ' [ ' [ ' [
. [ R . decncnlecacbencndencschaccslcaccsdaccscheccdeccankheae
1 ' ‘- ) 1 ' 1 ) 1 ) 1 )
[ [ ' [ ' [ ' [ ' [ ' [
1 ) 1 ) 1 ) 1 ] 1 ) 1 1
1 ' ) ) 1 ' 1 ' 1 ) 1 '
||||| B e e e I e e L e -
1 ) 1 ) 1 ) 1 ) 1 ) 1 )
[ [ ' [ [ [ [ [ [ [ [ [
' [ ' [ [ [ ' [ ' [ 1 [
1 ] 1 ) 1 ) ) ) 1 ) 1 ‘-
+ - B e e e S
' [ ' [ [ [ ' [ ' [ [ Aw
1 ) 1 ) 1 ) 1 ) 1 ) 1
) ) ) ) 1 ' ) ' 1 ) 1
' ' ' ' ' [ 1 [ ' [ ' a
B T I S L e B S I I I I Nl oI
1 ' 1 ) 1 ) 1 ' 1 ) 1 ‘-
[ [ [ [ ' [ [ [ ' [ ' [
1 ) 1 ) 1 ) 1 ) 1 ) 1 )
[ [ ' [ [ [ ' [ ' [ [ [
To=- B2l ot IR R At e Sl I IO R MO ottt ] ol L (R R ) N
1 ) 1 ) 1 ' 1 ) 1 ) 1 )
[ [ [ [ ' [ ' [ ' [ ' [
' [ ' [ [ [ ' [ ' [ 1 [
) ) 1 ) 1 ] 1 ) 1 ) 1 )
b Bkt e e e g S e e e e g e e (e e g e g o g e o e
[ [ ' [ ' [ ' [ ' [ 1 [
1 ) 1 ) 1 ) 1 ) 1 ) 1 )
' [ ' [ [ [ ' [ ' [ 1 [
[ [ 1 [ 1 ' [ ' ' [ 1 [
N o 1 ety et et (ot roomtienXamf] ooty Prionatiryl pieliutrat Ctmsiraiy beclmtitraond plwtiratrly )wratmiey] Clrarsier
[ ' ' [ [ [ ' [ [ [ [ [
' [ ' [ [ [ ' [ ' [ 1 2
) ' ) ) 1 ) ) ) 1 ) 1
[ [ [ ' [ ' [ 1 1 [ 1
||||| 0 b o] e Pt et pim ey Pt aiaeh ot et Trlarmiod st bty o
1 ) 1 ) 1 ) 1 ) 1 ) 1
[ [ [ [ ' [ [ [ ' [ ' *
' [ ' [ ' [ ' [ ' [ ' [
1 ) 1 ) 1 1 1 1 1 ) 1 )
lllll i Eomiie) i) Stk i ity Rataltd il tenintintb Ealiitborl sty v it
[ [ [ [ ' [ [ [ ' [ [ '
) ) 1 ) 1 ) 1 ) 1 ) 1 )
[ [ ' [ [ [ ' ' [ ' [ [
<4 1 1 1 1 1 ) -08- I- 1 -‘ L)
Y e T Bt TS ey T e [y St ot Bty | i TR
[ [ [ [ ' [ 1 [ ' [ ' [
1 ) 1 ) 1 ) 1 ‘- 1 ) 1 )
1 ) 1 ) 1 ) 1 ) 1 ) 1 )
| ' [ [ ' [ ' [ ' ' [ ] [
HESS R Nrminy T | deosted 2 bl ristet oy Pt edriod \Welrto  fpdian \pdrtoe ) priatiaty Nrdossping ricstn,
[ [ ' ' [ [ [ ' [ [ [ [
[ [ ' [ [ [ ' [ ' [ ' [
1 ' 1 ) 1 ) 1 ) 1 ) 1 )
| O] P, L S Y] | Ly gy | g Sy R ULy Gy
i ' T [ i i v T d i i '
1 ) 1 ] 1 ] 1 ) 1 ) 1 )
) ) ) ) 1 ' ) ' 1 ) 1 )
[ [ [ [ [ ' [ ' [ ' [
..... o i e s e e -.-..A_U...u-..----rnuu...u-n..----r--...__-n--r-au
1 ) I ' . ) ) ) ) ' 1 )
[ [ [ [ [ [ [ ' [ ' [
1 ) ) .- ) 1 ) 1 ) 1 )
' [ 1 [ [ [ [ [ ' [ ' [
f ERTO ._----.----»‘---.--u-r---._--u-r---._.--uL----r--u..----.----
1 ' 1 ) 1 ' 1 ' 1 ) 1 )
) ' ) ) 1 ) 1 ) 1 ) 1 '
[ [ ' [ [ [ 1 [ ' [ 1 [
1 ) 1 ) 1 ) 1 ) 1 ) 1 )
il S om m, WP = PO GG iy KRNSO [RpUPUR By DL [Py RN [ ]
[ . ] [ 1 [ ' ] [ ] [ '
1 1 ) 1 ) 1 ) 1 ) 1 )
' * ' [ [ [ ' [ ' [ 1 [
[ [ [ [ ' ' [ [ ' [ 1 [
‘- decenbhecnsdccaniccanbecndecnchencslconcdenccsbeccdecnckhaea
[ [ ' [ [ [ [ [ ' [ [ [
' [ ' [ [ [ ' [ ' [ 1 [
1 ' ) ) 1 ) 1 ) 1 ) 1 )
[ [ [ [ ' [ ' [ ' [ ' [




More Phonetics

Vowels = F1 and F2
Stops: short release
Fricatives: turbulence
Nasals: faint formants

Voice onset time: time between stop release
and start of voicing

Cues also come from formant transitions



