Automatic Speech Recognition

October 30, 2014

Generative Story of Speech

Acoustic Model

HMM for a single triphone (e.g. AE in the context B-AE-D)

Each acoustic feature vector is computed from a 25 ms time slice of speech, every 10 ms (overlapping)

Pronunciation Model

- DREAD D R EH D
- DREADED D R EH D IH D
- DREADFUL DREHDFAHL
- DREADFULLY D R EH D F AH L IY
- DREADING
 D R EH D IH NG
- DREADNOUGHT D R EH D N AO T
- DREADS
 D R EH D Z
- DREAM
 D R IY M
- DREAMED D R IY M D
- DREAMER D R IY M ER
- DREAMERS D R IY M ER Z

Fancier versions: multiple pronunciations per word, with probabilities

Language Model

Trigrams over words

```
\data\
ngram 1=64001
ngram 2=9382014
ngram 3=13459879
\1-grams:
-2.2801 < UNK > -0.0796
-4.4211 'CAUSE -1.2221
-4.5633 'EM -0.7278
-5.3040 'N -1.1561
-5.1095 'S -0.5186
-5.2887 'TIL -0.8268
-1.2258 </s> -7.0258
-99.0000 < s > -0.7635
-1.6818 A -1.3696
```

HMM for the word "ban"

Look up pronunciation dictionary and string the triphone HMMs together

HMM for a sentence

String word HMMs together using language model n-gram probabilities

One gigantic HMM

- Triphone HMMs combine to form
- Word HMMs which combine to form
- Sentence HMMs

- Desired result: best sequence of words that produced speech
- Find the best path through the HMM states using Viterbi

One gigantic HMM

- Desired result of ASR: best sequence of words that produced speech
- Find the best path through the HMM states using Viterbi
 - Can be prohibitively expensive in memory and time!
 - Constrain Viterbi by doing beam search: prune a certain number of low probability states at each time step

Training

- Language Model: Train n-grams from text just as usual (aiming for the appropriate domain)
- Pronunciation Model: usually a dictionary
- Acoustic Model:
 - Train from a large corpus of speech and wordlevel transcriptions
 - Unknown: transition and emission probabilities of triphone HMMs
 - Learn these probabilities with Expectation
 Maximization

What are the acoustic features?

Formants for vowels are a good start

How do we extract formants?

 Think back to source-filter model: vocal cords produce complex wave, vocal tract shapes filter them according to resonances

SOURCE SPECTRUM

FILTER FUNCTION

OUTPUT ENERGY SPECTRUM

Source interaction with Filter

Sopranos singing at high frequencies

Harmonics are spaced too far apart to hit the resonant frequencies

 Compute spectrum for a given time window by taking the Fourier transform of speech wave

- By source-filter model, this is a convolution of the voice E and the tract H
- Spectrul

- Spectrum X[k] = E[k] * H[k]
- Take log X[k] for two reasons:
 - Intensity variation is more on log scale than linear
 - Allows us to write the convolution as a sum

$$\log X[k] = \log E[k] + \log H[k]$$

 We see log X[k], and want to compute this separation to get log H[k]

 Play a neat trick: treat log X[k] as wave and take the inverse Fourier transform

- Play a neat trick: take the inverse Fourier transform of log X[k]
- Transform ends up separating low and high frequency regions

- One last step: human ear does not perceive frequencies linearly
- We are less sensitive to differences in high frequency ranges than in low ranges
- By running perceptual experiments, we come up with the "Mel scale":

$$f_{mel} = 2595 \log_{10}(1+f/700)$$

- Map the extracted cepstral peaks onto the Mel scale
- Take the highest 13 peaks
 - More or less correspond to formants
 - –2-3 peaks may be enough for vowels, but we need the remainder for consonants, resistance to noise, etc.

Acoustic Feature Extraction: Recap

- Divide speech signal into 25 ms windows, every 10 ms (overlapping windows)
- At each window:

More Phonetics

F2

More Phonetics

- Vowels = F1 and F2
- Stops: short release
- Fricatives: turbulence
- Nasals: faint formants
- Voice onset time: time between stop release and start of voicing
- Cues also come from formant transitions