Digital VLSI design

Lecture 9: Logical Effort

INDRAPRASTHA INSTITUTE of INFORMATION TECHNOLOGY DELHI

Example: 3-input NAND

• Sketch a 3-input NAND with transistor widths chosen to achieve effective rise and fall resistances equal to a unit inverter (R).

3-input NAND Caps

• Annotate the 3-input NAND gate with gate and diffusion capacitance.

Elmore Delay

- ON transistors look like resistors
- Pullup or pulldown network modeled as RC ladder
- Elmore delay of RC ladder

Example: 3-input NAND

• Estimate worst-case rising and falling delay of 3-input NAND driving *h* identical gates.

Delay Components

- Delay has two parts
 - Parasitic delay
 - 9 or 12 RC
 - Independent of load
 - Effort delay
 - 5h RC
 - Proportional to load capacitance

Contamination Delay

- Best-case (contamination) delay can be substantially less than propagation delay.
- Ex: If all three inputs fall simultaneously

$$\mathbb{R} \underbrace{\overline{R}} \underbrace{R} \underbrace{\overline{R}} \underbrace{\overline{R}}$$

Introduction

- Chip designers face a bewildering array of choices
 - What is the best circuit topology for a function?
 - How many stages of logic give least delay?
 - How wide should the transistors be?
- Logical effort is a method to make these decisions
 - Uses a simple model of delay
 - Allows back-of-the-envelope calculations
 - Helps make rapid comparisons between alternatives
 - Emphasizes remarkable symmetries

Example

- Ben is the memory designer for the Motoroil 68W86, an embedded automotive processor. Help Ben design the decoder for a register file.
- Decoder specifications:
 - 16 word register file
 - Each word is 32 bits wide
 - Each bit presents load of 3 unit-sized transistors
 - True and complementary address inputs A[3:0]
 - Each input may drive 10 unit-sized transistors
- Ben needs to decide:
 - How many stages to use?
 - How large should each gate be?
 - How fast can decoder operate?

Delay in a Logic Gate

- Express delays in process-independent unit
- Delay has two components: d = f + p
- f: effort delay = gh (a.k.a. stage effort)
 - Again has two components
- g: logical effort
 - Measures relative ability of gate to deliver current
 - $g \equiv 1$ for inverter
- *h*: *electrical effort* = C_{out} / C_{in}
 - Ratio of output to input capacitance
 - Sometimes called fanout
- *p*: parasitic delay
 - Represents delay of gate driving no load
 - Set by internal parasitic capacitance

$$d = \frac{d_{abs}}{\tau}$$
$$\tau = 3RC$$

≈ 3 ps in 65 nm process 60 ps in 0.6 μm process

Delay Plots

$$d = f + p$$
$$= gh + p$$

Computing Logical Effort

- DEF: Logical effort is the ratio of the input capacitance of a gate to the input capacitance of an inverter delivering the same output current.
- Measure from delay vs. fanout plots
- Or estimate by counting transistor widths

