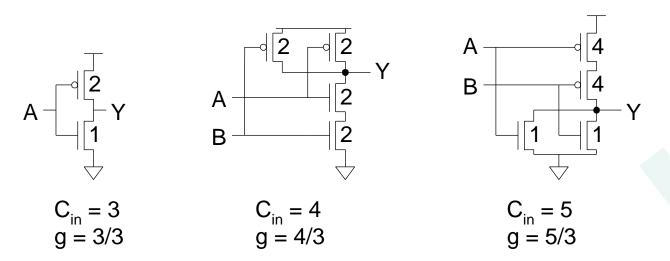
Digital VLSI design

Lecture 10: Logical Effort


INDRAPRASTHA INSTITUTE of INFORMATION TECHNOLOGY DELHI

Computing Logical Effort

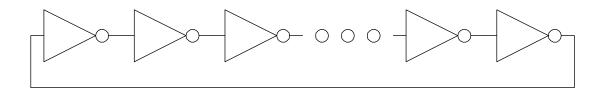
- DEF: Logical effort is the ratio of the input capacitance of a gate to the input capacitance of an inverter delivering the same output current.
- Measure from delay vs. fanout plots
- Or estimate by counting transistor widths

Catalog of Gates

• Logical effort of common gates

Gate type	Number of inputs					
	1	2	3	4	n	
Inverter	1					
NAND		4/3	5/3	6/3	(n+2)/3	
NOR		5/3	7/3	9/3	(2n+1)/3	
Tristate / mux	2	2	2	2	2	
XOR, XNOR		4, 4	6, 12, 6	8, 16, 16, 8		

Catalog of Gates


- Parasitic delay of common gates
 - In multiples of p_{inv} (\approx 1)

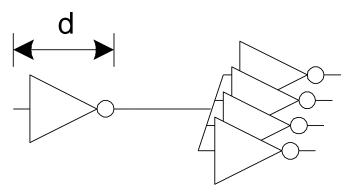
Gate type	Number of inputs					
	1	2	3	4	n	
Inverter	1					
NAND		2	3	4	n	
NOR		2	3	4	n	
Tristate / mux	2	4	6	8	2n	
XOR, XNOR		4	6	8		

Example: Ring Oscillator

• Estimate the frequency of an N-stage ring oscillator

Logical Effort: g =

- Electrical Effort: h =
- Parasitic Delay: p =
- Stage Delay: d =


Frequency: f_{osc} =

5

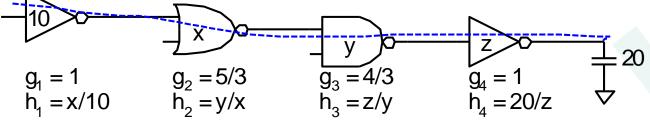
Example: FO4 Inverter

• Estimate the delay of a fanout-of-4 (FO4) inverter

- Logical Effort: g =
- Electrical Effort: h =
- Parasitic Delay: p =
- Stage Delay: d =

Multistage Logic Networks

- Logical effort generalizes to multistage networks
- Path Logical Effort


$$G = \prod g_i$$

Path Electrical Effort

$$H = \frac{C_{\text{out-path}}}{C_{\text{in-path}}}$$
$$F = \prod_{i=1}^{n} f_{i} - \prod_{i=1}^{n} f_{i}$$

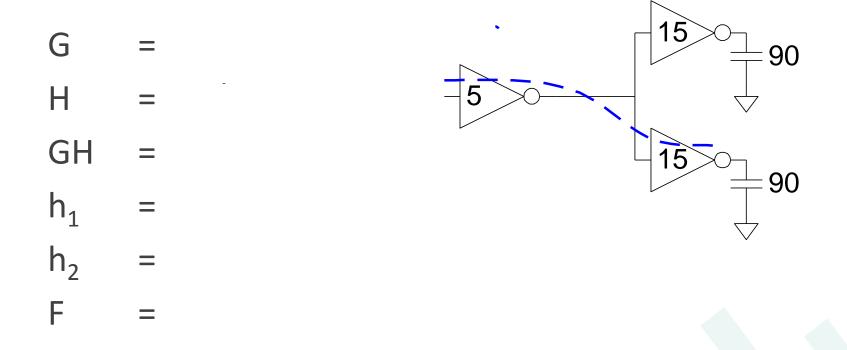
• Path Effort

$$F = \prod f_i = \prod g_i h_i$$

Multistage Logic Networks

- Logical effort generalizes to multistage networks
- Path Logical Effort

$$G = \prod g_i$$


Path Electrical Effort

$$H = \frac{C_{out-path}}{C_{in-path}}$$
$$F = \prod f_i = \prod g_i h_i$$

- Path Effort
- Can we write F = GH?

Paths that Branch

• No! Consider paths that branch:

Branching Effort

- Introduce *branching effort*
 - Accounts for branching between stages in path

$$b = \frac{C_{\text{on path}} + C_{\text{off path}}}{C_{\text{on path}}}$$

$$B = \prod b_i$$
Note:
$$\prod h_i = BH$$

Now we compute the path effort

Multistage Delays

• Path Effort Delay

$$D_F = \sum f_i$$

Path Parasitic Delay

$$P = \sum p_i$$

• Path Delay

$$D = \sum d_i = D_F + P$$

$$D = \sum d_i = D_F + P$$

• Delay is smallest when each stage bears same effort

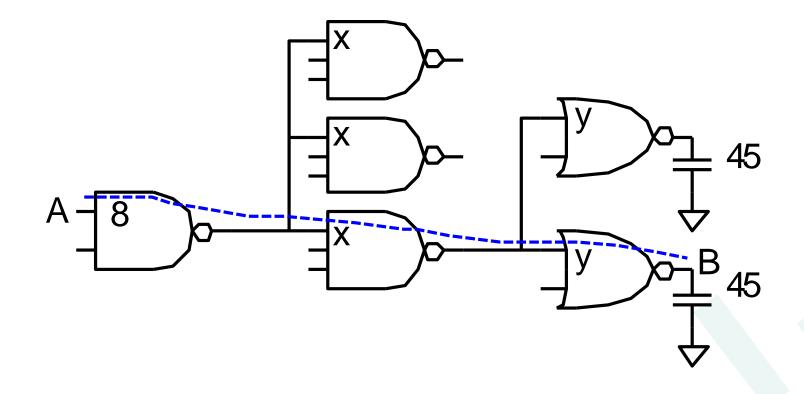
$$\hat{f} = g_i h_i = F^{\frac{1}{N}}$$

• Thus minimum delay of N stage path is

- This is a key result of logical effort
 - Find fastest possible delay
 - Doesn't require calculating gate sizes

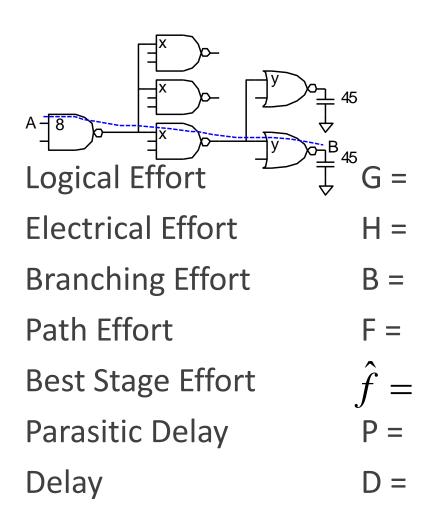
Gate Sizes

• How wide should the gates be for least delay?


$$\hat{f} = gh = g \frac{C_{out}}{C_{in}}$$
$$\Rightarrow C_{in_i} = \frac{g_i C_{out_i}}{\hat{f}}$$

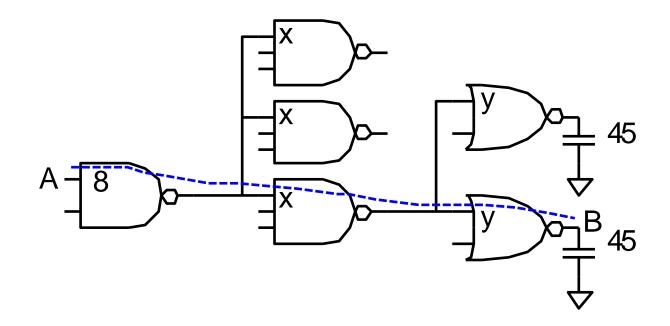
- Working backward, apply capacitance transformation to find input capacitance of each gate given load it drives.
- Check work by verifying input cap spec is met.

Example: 3-stage path



• Select gate sizes x and y for least delay from A to B

Example: 3-stage path



Example: 3-stage path

- Work backward for sizes
 - y =

x =

