Digital VLSI design

Lecture 18: Scaling

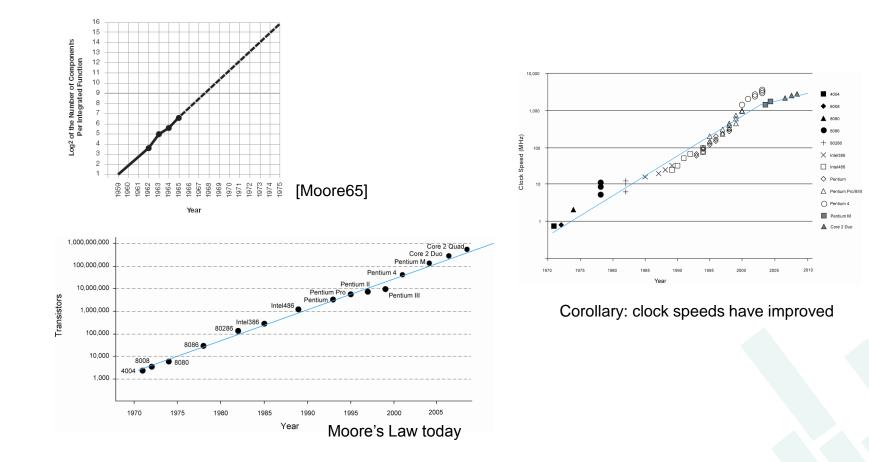
INDRAPRASTHA INSTITUTE of INFORMATION TECHNOLOGY DELHI

Mid Sem Performance

- ECE 314:
 - Average: 53.21 (out of 100)
 - Highest: 85
 - Lowest: 09

- ECE 514:
 - Average: 79.87 (out of 125)
 - Highest: 115
 - Lowest: 58

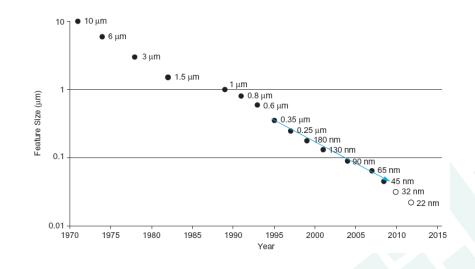
Outline


- Scaling
 - Transistors
 - Interconnect
 - Future Challenges
- Economics

Moore's Law

Recall that Moore's Law has been driving CMOS

Why?



- Why more transistors per IC?
 - Smaller transistors
 - Larger dice
- Why faster computers?
 - Smaller, faster transistors
 - Better microarchitecture (more IPC)
 - Fewer gate delays per cycle

Scaling

- The only constant in VLSI is constant change
- Feature size shrinks by 30% every 2-3 years
 - Transistors become cheaper
 - Transistors become faster and lower power
 - Wires do not improve (and may get worse)
- Scale factor S
 - Typically $S = \sqrt{2}$
 - Technology nodes

Dennard Scaling

- Proposed by Dennard in 1974
- Also known as constant field scaling
 - Electric fields remain the same as features scale
- Scaling assumptions
 - All dimensions (x, y, z => W, L, t_{ox})
 - Voltage (V_{DD})
 - Doping levels

Device Scaling

Parameter	Sensitivity	Dennard Scaling
L: Length		1/S
W: Width		1/S
t _{ox} : gate oxide thickness		1/S
V _{DD} : supply voltage		1/S
V _t : threshold voltage		1/S
NA: substrate doping		S
β	W/(Lt _{ox})	S
I _{on} : ON current	$\beta(V_{DD}-V_t)^2$	1/S
R: effective resistance	V _{DD} /I _{on}	1
C: gate capacitance	WL/t _{ox}	1/S
τ: gate delay	RC	1/S
f: clock frequency	1/τ	S
E: switching energy / gate	CV _{DD} ²	1/S ³
P: switching power / gate	Ef	1/S ²
A: area per gate	WL	1/S ²
Switching power density	P/A	1
Switching current density	I _{on} /A	S

- Gates get faster with scaling (good)
- Dynamic power goes down with scaling (good)
- Current density goes up with scaling (bad)

Example

- Gate capacitance is typically about 1 fF/ μ m
- The typical FO4 inverter delay for a process of feature size f (in nm) is about 0.5f ps
- Estimate the ON resistance of a unit (4/2 λ) transistor.

Real Scaling

- t_{ox} scaling has slowed since 65 nm
 - Limited by gate tunneling current
 - Gates are only about 4 atomic layers thick!
 - High-k dielectrics have helped continued scaling of effective oxide thickness
- V_{DD} scaling has slowed since 65 nm
 - SRAM cell stability at low voltage is challenging
- Dennard scaling predicts cost, speed, power all improve
 - Below 65 nm, some designers find they must choose just two of the three

Wire Scaling

- Wire cross-section
 - w, s, t all scale
- Wire length
 - Local / scaled interconnect
 - Global interconnect
 - Die size scaled by $\rm D_{c}\,{\approx}\,1.1$

Interconnect Scaling

Parameter	Sensitivity	Scale Factor
w: width		1/S
s: spacing		1/S
t: thickness		1/S
h: height		1/S
D _c : die size		D _c
R _w : wire resistance/unit length	1/wt	S ²
C _{wf} : fringing capacitance / unit length	t/s	1
C _{wp} : parallel plate capacitance / unit length	w/h	1
C _w : total wire capacitance / unit length	$C_{wf} + C_{wp}$	1
t _{wu} : unrepeated RC delay / unit length	R _w C _w	S ²
twr: repeated RC delay / unit length	sqrt(RCR _w C _w)	sqrt(S)
Crosstalk noise	w/h	1
E _w : energy per bit / unit length	$C_w V_{DD}^2$	1/S ²

Interconnect Delay

Parameter	Sensitivity	Local / Semiglobal	Global
I: length		1/S	D _c
Unrepeated wire RC delay	l ² t _{wu}	1	S ² D _c ²
Repeated wire delay	lt _{wr}	sqrt(1/S)	D _c sqrt(S)
Energy per bit	IEw	1/S ³	D ^c /S ²

- Capacitance per micron is remaining constant
 - About 0.2 fF/ μ m
 - Roughly 1/5 of gate capacitance
- Local wires are getting faster
 - Not quite tracking transistor improvement
 - But not a major problem
- Global wires are getting slower
 - No longer possible to cross chip in one cycle

 A 32 bit off-chip bus operating at 1.5V and 1GHz clock rate is driving a capacitance of 3pF/bit. Each bit is estimated to have a toggling probability of 0.25 at each clock cycle. What is the power dissipation in operating the bus?