Digital VLSI design

Lecture 20: Sequential Circuit Design

INDRAPRASTHA INSTITUTE of INFORMATION TECHNOLOGY DELHI

Sequencing Methods

- Flip-flops
- 2-Phase Latches
- Pulsed Latches

Timing Diagrams

Contamination and Propagation Delays

			A t _{pd}
t _{pd}	Logic Prop. Delay		Y t _{cd}
t _{cd}	Logic Cont. Delay		
t _{pcq}	Latch/Flop Clk->Q Prop. Delay		Clk t _{setup} t _{hold}
t _{ccq}	Latch/Flop Clk->Q Cont. Delay		
t _{pdq}	Latch D->Q Prop. Delay		Q t _{ccq}
t _{cdq}	Latch D->Q Cont. Delay	clk	clk
t _{setup}	Latch/Flop Setup Time	Qgtcp	
t _{hold}	Latch/Flop Hold Time		

Max Delay: 2-Phase Latches

Max Delay: Pulsed Latches $t_{pd} \le T_c - \max($ Q1 **Combinational Logic** sequencing overhead T_{c} Ď(1 pdq (a) $t_{pw} > t_{setup}$ Q1 t_{pd} D2 T_c t_{pd} Q1 setup (b) $t_{pw} < t_{setup}$

D2

Min-Delay: Flip-Flops

 $t_{cd} \ge$

Min-Delay: 2-Phase Latches

 $t_{cd1,}t_{cd2} \geq$

Hold time reduced by nonoverlap

Paradox: hold applies twice each cycle, vs. only once for flops.

But a flop is made of two latches!

Min-Delay: Pulsed Latches

Time Borrowing

- In a flop-based system:
 - Data launches on one rising edge
 - Must setup before next rising edge
 - If it arrives late, system fails
 - If it arrives early, time is wasted
 - Flops have hard edges
- In a latch-based system
 - Data can pass through latch while transparent
 - Long cycle of logic can borrow time into next
 - As long as each loop completes in one cycle

Time Borrowing Example

How Much Borrowing?

Clock Skew

- We have assumed zero clock skew
- Clocks really have uncertainty in arrival time
 - Decreases maximum propagation delay
 - Increases minimum contamination delay
 - Decreases time borrowing

Skew: Flip-Flops

 $t_{pd} \le T_c - \left(t_{pcq} + t_{setup} + t_{skew}\right)$ sequencing overhead

$$t_{cd} \ge t_{hold} - t_{ccq} + t_{skew}$$

Skew: Latches

2-Phase Latches

$$\begin{split} t_{pd} &\leq T_c - \underbrace{\left(2t_{pdq}\right)}_{\text{sequencing overhead}} \\ t_{cd1}, t_{cd2} &\geq t_{\text{hold}} - t_{ccq} - t_{\text{nonoverlap}} + t_{\text{skew}} \\ t_{\text{borrow}} &\leq \frac{T_c}{2} - \left(t_{\text{setup}} + t_{\text{nonoverlap}} + t_{\text{skew}}\right) \end{split}$$

Pulsed Latches

$$t_{pd} \leq T_c - \underbrace{\max\left(t_{pdq}, t_{pcq} + t_{setup} - t_{pw} + t_{skew}\right)}_{\text{sequencing overhead}}$$

$$\begin{split} t_{cd} &\geq t_{\text{hold}} + t_{pw} - t_{ccq} + t_{\text{skew}} \\ t_{\text{borrow}} &\leq t_{pw} - \left(t_{\text{setup}} + t_{\text{skew}}\right) \end{split}$$

Two-Phase Clocking

- If setup times are violated, reduce clock speed
- If hold times are violated, chip fails at any speed
- In this class, working chips are most important
 - No tools to analyze clock skew
- An easy way to guarantee hold times is to use 2phase latches with big nonoverlap times
- Call these clocks ϕ_1 , ϕ_2 (ph1, ph2)

Safe Flip-Flop

- Past years used flip-flop with nonoverlapping clocks
 - Slow nonoverlap adds to setup time
 - But no hold times
- In industry, use a better timing analyzer
 - Add buffers to slow signals if hold time is at risk

Adaptive Sequencing

- Designers include timing margin
 - Voltage
 - Temperature
 - Process variation
 - Data dependency
 - Tool inaccuracies

- Alternative: run faster and check for near failures
 - Idea introduced as "Razor"
 - Increase frequency until at the verge of error
 - Can reduce cycle time by ~30%

Summary

- Flip-Flops:
 - Very easy to use, supported by all tools
- 2-Phase Transparent Latches:
 - Lots of skew tolerance and time borrowing
- Pulsed Latches:
 - Fast, some skew tol & borrow, hold time risk

	Sequencing overhead $(T_c - t_{pd})$	Minimum logic delay t _{cd}	Time borrowing t _{borrow}
Flip-Flops	$t_{pcq} + t_{setup} + t_{skew}$	$t_{\rm hold} - t_{ccq} + t_{\rm skew}$	0
Two-Phase Transparent Latches	2t _{pdq}	$t_{\text{hold}} - t_{ccq} - t_{\text{nonoverlap}} + t_{\text{skew}}$ in each half-cycle	$\frac{T_c}{2} - \left(t_{\text{setup}} + t_{\text{nonoverlap}} + t_{\text{skew}}\right)$
Pulsed Latches	$\max\left(t_{pdq}, t_{pcq} + t_{setup} - t_{pw} + t_{skew}\right)$	$t_{\rm hold} - t_{ccq} + t_{pw} + t_{\rm skew}$	$t_{pw} - (t_{setup} + t_{skew})$

