
CMPE 110 Computer Architecture, Fall 2014
Homework #3

Computer Engineering
UC Santa Cruz

October 31, 2014

Name:

Email:

Submission Guidelines:

• This homework is due on Thursday 10/30/14.

• Bring the homework to class before 8pm

– Anything later is a late submission

• Please write your name and your UCSC email address

• The homework should be “readable” without too much effort

– If your handwriting is like mine, type it or risk not being graded

• Provide details on how to reach a solution. An answer without explanation has no
credit. Clearly state all assumptions.

• Points: 40 = 10 + 14 + 16

Question Part A Part B Part C Part D Total
1 - -
2
3

Total

1

Question 1. Stack CPU (10 points)

In this problem we will study a processor that implements a Stack ISA similar to the one
from Homework 1. A summary of Stack ISA instructions are given in the first two columns
of the table below.

This Stack CPU is pipelined and uses the same stages as Tiny ISA (Fetch, Decode, Execute,
Memory, and Writeback). The primary difference of the Stack CPU is that it uses a Stack
instead of a Register File for local storage. Instead of reading from a Register File in the ID
stage, the Stack CPU pops from the Stack in the ID stage. Additionally, instead of writing
to a Register File in the WB stage, the Stack CPU pushes to the Stack in the WB stage.

Suppose that in this Stack CPU, only a single value may be popped from the Stack per cycle.
Additionally, only a single value may be pushed to the Stack per cycle. This is analogous to
a Register File with one read port and one write port.

Instruction Operation Instruction Latency

add pop x; pop y; push x+ y 6 cycles
bgtz label pop x; if x > 0, jump to address specified by label

dup pop x; push x; push x
goto label jump to address specified by label

pushi imm push imm

pushm pop addr; push M[addr]
popm pop x; pop addr; M[addr] ← x
sub pop x; pop y; push y − x
swap pop x; pop y; push x; push y

Question 1.A Instruction Latency (4 points)

Fill out the last column in the table above. Assume no stalling for hazards. The first one
has been done for you and it accounts for the fact that the add instruction requires two pops
from the stack in order to have its operands for the EX stage.

Question 1.B Pipeline Behavior (6 points)

Fill out the following pipeline diagram for the following code segment of Stack ISA in-
structions. Assume that the pipeline stalls to resolve structural hazards and uses
bypassing to resolve data hazards. Circle pipeline stages in which bypassing is necessary
and draw arrows indicating data dependencies between stages.

Use the pipeline diagram to calculate the average CPI of this Stack CPU.

2

In
st

ru
ct

io
n

C
0

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
1
0

C
1
1

C
1
2

C
1
3

C
1
4

C
1
5

p
u
s
h
m

p
u
s
h
i

#
1

a
d
d

s
w
a
p

d
u
p

p
o
p
m

3

Question 2. Multiplier (14 points)

In the previous homework, we considered several different implementations of an unsigned
two-input integer multiplier capable of multiplying a 32-bit operand by a 4-bit operand to
produce a truncated 32-bit result. We will now look at a new design for a multiplier, shown
in (e) in the figure below. The datapaths for the multipliers in the previous homework are
shown in (a) through (d) for reference.

The datapath in (e) is for a variable-cycle pipelined multiplier. This microarchitecture ex-
ploits the fact that when some of the bits in the four-bit operand are zero, we dont actually
have to do any work. We add a new stage at the beginning of the pipeline (denoted with the
Y symbol) that is responsible for determining the bit position of the most significant one in
the four-bit operand. This control information then goes down the pipeline and is used to
write the result to the final output register as soon as we are sure the rest of the stages will
do no work. Note that this requires an extra mux before the output register, and we will need
to carefully handle the structural hazard caused by multiple stages writing the same register.
Assume that the multiplier stalls in the Y stage whenever it detects that letting
the current transaction go down the pipeline would cause a structural hazard.

4

Question 2.A Standalone Performance (4 points)

Like in the previous homework, for this part we will be running the following four multipli-
cation instructions.

1 mul $r0, $r0, 0xf

2 mul $r1, $r1, 0x7

3 mul $r2, $r2, 0x3

4 mul $r3, $r3, 0x1

Fill in the instruction vs. time diagram below illustrating the execution of these four multi-
plication instructions on the pipelined variable-cycle microarchitecture. Use the symbols Y,
X0, X1, X2, and X3 to indicate on which cycle each transaction is using that part of the
multiplier. Look at the four-bit operand in each of the four multiplication transactions to
determine how many stages of computation are actually required.

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15
I0
I1
I2
I3

Use your diagram to fill in the table below, which is similar to the table found on the previous
homework.

Num Cycle Instruction Total
Instr Time Latency Throughput Execution Time

Microarchitecture (#) (τ) (cyc) (τ) CPI (τ)

(e) Var-Cycle Pipelined 4

Question 2.B Variable Latency vs Fixed-Latency (4 points)

Discuss when we would want to choose this variable-latency pipelined multiplier over a fixed-
latency design like from the previous homework, and vice-versa. What are the trade-offs?

5

Question 2.C Integrating with Processor (6 points)

Suppose that we like this design for the multiplier and decide to integrate it with our 5-stage
pipelined processor. This block would exist alongside the ALU in the EX stage so when an
instruction reaches the EX stage, it either goes through the ALU or through the multiplier.
If it goes through the ALU, we denote this using EX stage as normal. If it goes through
the multiplier, we denote this using the X0, X1, X2, and X3 stages (similar to part A).
Note that we no longer need the Y stage because the Y stage is replaced by the ID stage in
the processor. That means that the ID stage will stall if it detects that letting the current
instruction go down the pipeline would cause a structural hazard.

Assume that the pipeline stalls to avoid structural hazards and uses bypassing
to avoid data hazards.

The instructions we want to run through the processor are as follows (note that they are
different from the instructions in part A):

1 mul $r0, $r3, 0xf

2 mul $r1, $r0, 0x7

3 mul $r2, $r1, 0x3

4 mul $r3, $r2, 0x1

Fill out the pipeline diagram on the next page, illustrating the execution of these four multi-
plication instructions on the updated pipelined processor. Use this diagram to calculate the
average CPI of this newly integrated processor.

6

C
0

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
1
0

C
1
1

C
1
2

C
1
3

C
1
4

C
1
5

C
1
6

C
1
7

I0 I1 I2 I3

7

Question 3. Resolving Data Hazards (16 points)

In this problem we look at a 5-stage pipelined processor that uses the tiny ISA. We will look
at the following code segment that includes data dependencies.

1 add $r0, $r1, $r2

2 sub $r1, $r0, $r3

3 ld $r4, [$r7]

4 st [$r8], $r9

5 add $r5, $r4, $r0

6 bne $r4, $r5, #10

Question 3.A Stalling (1 point)

The pipeline diagram below shows these instructions going through the processor. In this
baseline design, the processor stalls to resolve data hazards.

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14
I0 IF ID EX ME WB
I1 IF ID ID ID EX ME WB
I2 IF IF IF ID EX ME WB
I3 IF ID EX ME WB
I4 IF ID ID EX ME WB
I5 IF IF ID ID ID EX ME WB

Use the above pipeline diagram to calculate the average CPI of the baseline processor.

Question 3.B Scheduling (6 points)

One way to deal with data hazards is to use scheduling. Scheduling is usually done on the
software side by the compiler and involves re-ordering the instructions in the assembly. This
is allowed as long as it does not change the overall functionality of the code. How would you
re-order the code segment to improve the CPI of the processor? Write the newly re-scheduled
code and fill in the pipeline diagram on the next page.

8

C
0

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
1
0

C
1
1

C
1
2

C
1
3

C
1
4

C
1
5

C
1
6

C
1
7

I0 I1 I2 I3 I4 I5

9

Question 3.C Bypassing (6 points)

Another way to deal with data hazards is to use bypassing. Bypassing involves modifying
the hardware to add muxes to allow for data to be forwarded between stages so that there is
no need to wait for the WB stage of the previous instruction necessarily. In this case, other
stages in the pipeline can read new values before they are written back.

Fill in the pipeline diagram on the next page showing how instructions go through the pipeline
using bypassing. Circle stages and draw arrows on the diagram between them showing how
data is forwarded. Use this diagram to calculate average CPI of the processor with bypassing.

Question 3.D Trade-Offs (3 points)

Compare the different ways to deal with data hazards studied in parts A, B, and C and
discuss their trade-offs.

10

C
0

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
1
0

C
1
1

C
1
2

C
1
3

C
1
4

C
1
5

C
1
6

C
1
7

I0 I1 I2 I3 I4 I5

11

