
CMPE 110 Computer Architecture, Fall 2014
Homework #5

Computer Engineering
UC Santa Cruz

November 14, 2014

Name:

Email:

Submission Guidelines:

• This homework is due on Thursday 11/20/14.

• Bring the homework to class before 8pm

– Anything later is a late submission

• Please write your name and your UCSC email address

• The homework should be “readable” without too much effort

– If your handwriting is like mine, type it or risk not being graded

• Provide details on how to reach a solution. An answer without explanation has no
credit. Clearly state all assumptions.

• Points: 44 = 14 + 10 + 20

Question Part A Part B Part C Part D Part E Part F Total
1 -
2 - - -
3

Total

1



Question 1. Basic Cache (14 points)

Consider a 1-MByte cache with 16-word cachelines (a cacheline is also known as a cache
block, each word is 4-Bytes). This cache uses write-back scheme, and the address is 64-bits
wide.

Question 1.A Direct-Mapped, Cache Fields (2 points)

Assume the cache is direct-mapped. Fill in the table below to specify the size of each address
field.

Field Size (bits)
Byte Offset
Cacheline Offset
Cacheline Index
Tag

Question 1.B 4-Way Set-Associative, Cache Fields (1 point)

Assume the cache is 4-way set-associative. Fill in the table below to specify the size of each
address field.

Field Size (bits)
Byte Offset
Cacheline Offset
Cacheline Index
Tag

Question 1.C Direct-Mapped, Cache Transactions (6 points)

Assume the cache is direct-mapped. Fill in the table on the next page to identify the content
of the cache after each of the following memory accesses. Assume the cache is initially empty
(also called a “cold cache”). Specify if an entry causes another line to be replaced from the
cache, and if an entry has to write its data back to memory. For the data column, specify
the data in the block by referring to its address like M[address]. Write accesses will modify
the data, so let’s indicate the data after a write access with D[address].

2



Cachline Cause Write-back
Address Request Index Valid Modified Tag Data Replaced? to Memory?

0x128 read M[0x120]

0xF40 write D[0xF40]

0xC00024 read

0x014 write

0x1000F44 read

Question 1.D 4-Way Set-Associative, Cache Transactions (3 points)

Assume the cache is 4-way set-associative. Fill the table below to identify the content of
the cache after each of the following memory accesses. Assume the cache is empty in the
beginning (also known as cold cache). Specify if an entry causes another line to be replaced
from the cache, and if an entry has to write its data back to memory. For the data column,
specify the data in the block by referring to its address like M[address]. Write accesses will
modify the data, so lets indicate the data after a write access with D[address].

Cachline Cause Write-back
Address Request Index Valid Modified Tag Data Replaced? to Memory?

0x128 read M[0x120]

0xF40 write D[0xF40]

0xC00024 read

0x014 write

0x1000F44 read

Question 1.E Overhead (2 points)

What is the overhead and actual size of the direct-mapped cache? What is the overhead and
actual size of the 4-way set-associative cache? Does the structure change the overhead in
terms of number of memory bits?

3



Question 2. Impact of Cache Access Time (10 points)

In this problem, we will be comparing various microarchitectures for a simple data cache.
For all parts, the memory requests use a 32-bit address, although you should assume that all
addresses are word aligned. Since words are four bytes, this means the bottom two bits of
the address will always be zero. All caches contain exactly eight cache lines, and each cache
line contains four words (i.e., each cache line is 16 bytes long). Thus the total cache capacity
is 8 × 16 B = 128 B.

This problem will require you to identify the critical path of a specific microarchitecture. The
table below lists simplified delay equations for the cache hardware components. These delay
equations are parameterized by the size of each component. Delay is measured in normalized
gate delays, where 1τ is the delay of a single inverter driving four identical inverters. To
simplify things, assume that the delay of a component is always the same regardless of the
order in which different inputs arrive at a component. More specifically, the delay of a write
access is the same regardless of whether the address arrives before the write data or vice
versa. Also assume that we are using combinational memories (i.e., the address is set and
the data is returned on the same cycle). Note that the dxe notation denotes the ceiling
operator, i.e., the value x rounded up to the next largest integer.

Components Delay (τ) Comment

register read 1 delay from clock edge to data out
register write 1 setup time constraint
n-input AND gate n simple logic gate
n-input OR gate n simple logic gate
n-to-m decoder 2 + 2n 2 for fixed overhead, 2n for logic
n-bit comparator 3 + 2dlog2 ne 3 for initial XOR gate, 2dlog2 ne for OR tree
n-input mux 2 + 3dlog2 ne 2 for fixed overhead, 3dlog2 ne for

tree-based muxing logic
n×m decoder 10 + d(n+m)/32e n rows and m bits per row, 10 for fixed overhead and

bitcell access, d(n+m)/32e to drive word
and bit lines

4



5



Question 2.A Sequential Tag Check then Memory Access (2 points)

The diagram on the previous page illustrates two cache microarchitectures that serialize the
tag check before data access. This means that for both reads and writes, the cache completely
finishes the tag check and accesses the data memory only on a cache hit. figure (a) is for a
directed-mapped cache, while figure (b) is for a two-way set-associative cache.

We now want to determine the critical path and cycle time in units of τ for each cache
microarchitecture. As an example, the table below shows the critical path and cycle time
for the directed-mapped cache from (a). Note that because we are serializing the tag check
before data access and because the delay equations are the same for both read and write
accesses, the critical path is the same regardless of whether we are doing a read or a write.
This is a simplification, but it will do for the purposes of this part. Note that the tag is 25
bits, but each row of the tag memory requires 26 bits since it must also include a valid bit.

Create a table similar to the one in the example which identifies the critical path and cycle
time in units of τ for the two-way set-associative cache in (b). Compare the cycle times of the
two cache microarchitectures. What is the primary reason one microarchitecture is slower
than the other microarchitecture?

Component Delay Equation Delay (τ)
addr reg M0 1 1
tag decoder 2 + 2 · 3 8
tag mem 10 + d(8 + 26)/32e 12
tag cmp 3 + 2dlog2 25e 13
tag and 2 2
data mem 10 + d(8 + 128)/32e 15
data mux 2 + 3dlog2 4e 8
rdata reg M1 1 1
Total 60

6



Question 2.B Parallel Read Hit Path (4 points)

The diagram on the next page illustrates two cache microarchitectures with parallel read hit
paths and pipelined write hit paths. This means that for a single read request, the tag check
is done in parallel with the data memory read access, while for for a single write request the
tag check is done in stage M0 and the data memory write access is done in stage M1. Figure
(a) is for a directed-mapped cache, while figure (b) is for a two-way set-associative cache.

For this part we will focus just on the parallel read hit path for both the direct-mapped and
set-associative caches. Create two tables similar to the one from the previous part which
identifies the critical path and cycle time in units of τ for just the parallel read hit paths.
Note that since the tag check and the data memory read access are done in parallel, you
will need to examine both of these paths to determine which one is in fact the critical path.
Compare the cycle times of the two cache microarchitectures. What is the primary reason
one microarchitecture is slower than the other microarchitecture?

Question 2.C Pipelined Write Hit Path (4 points)

For this part we will focus just on the pipelined write hit path for both the direct-mapped
and set-associative caches shown on the next page. Create two tables similar to the one
in the previous parts which identifies the critical path and cycle time in units of τ for just
the pipelined write hit path. Note that since the tag check and the data memory write
access happen in two different stages, you will need to examine both of these paths to
determine which one is in fact the critical path. Compare the cycle times of the two cache
microarchitectures. What is the primary reason one microarchitecture is slower than the
other microarchitecture?

7



8



Question 3. Two-Cycle Instruction Cache (20 points)

In this problem, we will be examining the performance of the instruction cache on the MIPS
assembly program shown on the next page. The first column shows the instruction address for
each instruction. Note that these addresses are byte addresses. The value of r1 is initially 64,
meaning that there are 64 iterations in the loop. In this problem, we will be considering the
execution of this loop with a direct-mapped instruction cache microarchitecture with eight
cache lines, and each cacheline is 16B. This means each cache line can hold four instructions
and the bottom four bits of an instruction address are the block offset. Hint: The first
instruction in the code segment (i.e., addiu r1, r1, -1), is in the middle of a cache line.

For this problem, the instruction cache hit time is two cycles, but it is fully pipelined. Tag
check occurs in the first cycle, and if it is a hit, the instruction is read in the second cycle.
Essentially, this creates a six-stage pipelined processor with the following stages: instruction
cache tag check (F0), instruction cache data access (F1), decode (D), execute (X), memory
(M), and write-back (W). This also implies the data cache hit time is one cycle.

Assume that jumps are resolved in the decode stage and that branches are re-
solved in the execute stage. Assume the miss penalty is three cycles so on a
cache miss the pipeline will stay in F0 for a total of three cycles, go into F1 for
one cycle, and then continue as normal. You should assume that in every other
way, the processor pipeline follows the classic fully-bypassed five-stage pipeline.
Assume that the processor does not include a branch delay slot. Assume the
processor speculatively predicts all jumps and branches are not taken.

Question 3.A Control Hazards (3 points)

Draw a pipeline diagram illustrating the first iteration of the loop assuming there are no
instruction cache misses. Remember that there are two fetch stages (F0 and F1). Show stalls
by simply repeating the pipeline stage character (e.g., D) for multiple consecutive cycles.
Use a dash (-) to indicate pipeline bubbles caused by killing instructions. Draw two arrows
indicating the control dependencies for the jump and branch instructions. The arrow should
start in the stage where the jump/branch is resolved and point to the first fetch stage of the
target instruction. You should show all instructions in the first iteration of the loop and the
first instruction of the second iteration that you can properly draw the control dependency
for the backwards branch.

9



Q4.B Iteration 1 Q4.C Iteration 2
Address Instruction ICache Miss Type ICache Miss Type

loop:

0x108 addiu r1, r1, -1

0x10c j foo

0x110 addiu r2, r2, 1

0x114 addiu r3, r3, 1

0x118 addiu r4, r4, 1

0x11c addiu r5, r5, 1

...

foo:

0x218 bgtz r1, loop

0x21c addiu r6, r6, 1

0x220 addiu r7, r7, 1

0x224 addiu r8, r8, 1

0x228 addiu r9, r9, 1

Question 3.B First Iteration of the Loop (4 points)

Fill in the table above. In the appropriate column, write compulsory, conflict, or capacity next
to each instruction which misses in the instruction cache to indicate the type of instruction
cache misses that occur in the first iteration of the loop. Assume that the instruction
cache is initially completely empty. Now draw a pipeline diagram illustrating the first
iteration of the loop including instruction cache misses. Assume that a given instruction can
only stall instructions that are after it in program order, and can never stall instructions
that are before it in program order. Clearly indicate the number of cycles it takes to execute
the first iteration and also indicate the instruction cache miss rate. The miss rate includes
instructions that are fetched but then later squashed. As in the previous part, draw arrows
indicating the control dependencies for the jump and branch instructions.

Question 3.C Second Iteration of the Loop (4 points)

Continue to fill in the table above. Write compulsory, conflict, or capacity next to each
instruction which misses in the instruction cache to indicate the type of instruction caches
misses that occur in the second iteration of the loop. Now draw a pipeline diagram illustrating
the second iteration of the loop. Clearly indicate the number of cycles it takes to execute
the second iteration and the instruction cache miss rate. The miss rate includes instructions
that are fetched but then later squashed. As in the previous part, draw arrows indicating
the control dependencies for the jump and branch instructions.

10



Question 3.D Average Memory Access Latency (3 points)

Calculate the average instruction cache memory access latency in cycles for 64 iterations
of the loop. You must show your work, especially the various components of the average
memory access latency. Remark on which kind of miss is dominating the average memory
access latency.

Question 3.E Processor Performance (3 points)

Calculate the CPI for this processor executing all 64 iteration of the loop. You must show
your work. Note that the “I” in CPI stands for instruction and that we do not include
instructions that are fetched but then later squashed in this count. Similarly, the CPI due
to executing useful work, should not include instructions that are fetched but then later
squashed.

Question 3.F Set-Associativity (3 points)

Qualitatively, predict how the cache performance would change if we replace the eight-entry,
direct-mapped cache with an eight-entry, two-way, set-associative cache. Both caches have a
two-cycle hit latency. Assume the set-associative cache address interleaves the sets across the
ways using the least significant bits right after the block offset. What kind of misses would
be present with this kind of cache microarchitecture?

11


