
Fluids & Plasmas, AA 363

Problem Set I: Fluid Kinematics, Vorticity, Equilibrium

1. Streamlines: Let the streamlines of a time-independent 2-D flow on R2 be given by (u, v) =
(αx,−αy). Sketch the streamlines. Express, as a function of time, the trajectory of a fluid
element starting at (1, 1) at t = 0. How does the density of this fluid element vary as a function
of time? How do the sides of a rectangular fluid element vary as it moves along streamlines?

2. Volume and Density: Consider a fluid element with density ρ0 centered at (x0, y0, z0). Assume
that the fluid element flows to (x, y, z) at a later time. Show that the density ρ at the later time
is related to ρ0 as

ρ = ρ0
∂(x0, y0, z0)

∂(x, y, z)
,

where the right-hand-side denotes the Jacobian connecting the two volume elements (adapted
from Batchelor).

3. Euler Equations in Conservative Form: Starting with the standard form of Euler equations,

dρ

dt
= −ρ(~∇ · ~u),

d~u

dt
= −~∇p/ρ, ρ

dε

dt
= −p(~∇ · ~u),

derive the conservative form of Euler equations,

∂ρ

∂t
+ ~∇ · (ρ~u) = 0,

∂ρ~u

∂t
+ ~∇ ·

(
ρ~u~u+ p

←→
I
)

= 0,
∂

∂t

(
ρε+

1

2
ρu2

)
+ ~∇ ·

[
ρ~u(u2/2 + w)

]
= 0,

where the sumbols have their usual meaning. Why is this the conservative form?

4. Self-gravitating, Rotating Disk: A useful model for the warm interstellar medium (ISM) is
that it is a rotating, self-gravitating, equilibrium flow in form of a thin disk. Under the thin disk
approximation the vertical and radial directions are decoupled. The vertical force and Poisson’s
equations are given by

dp

dz
= −ρdφ

dz
,
d2φ

dz2
= 4πGρ.

Assuming WIM to be isothermal (constant temperature T ) show that the density have a ρ =
ρ0sech2(z/z0) profile in the z− direction. Express z0 in terms of T , ρ0 and G.

5. Potential Flows in 2D: For incompressible and irrotational flows, ~∇ · ~u = ~∇ × ~u = 0. This
implies that ~u can be written as −~∇φ (where φ is called the velocity potential) and the incom-
pressibility condition implies ∇2φ = 0; i.e., φ satisfies the Laplace’s equation. From your studies
of electrostatics, recall that this equation can be solved if we specify the value of φ (Dirichlet
BC) of ∂φ/∂n (Neumann BC) at the boundaries. Now, solve for the steady streamlines for a
flow past a spherical surface of radius a. The normal velocity at the surface of the sphere should
vanish.

6. Rotating Bucket: An ideal fluid is rotating under gravity g with constant angular velocity Ω,
so that relative to fixed Cartesian axes ~u = (Ωy,Ωx, 0). We wish to find the surfaces of constant
pressure, and hence the surface of a uniformly rotating bucket of water (which will be at the
atmospheric pressure).

‘By Bernoulli,’ p/ρ+ u2/2 + gz is a constant, so the constant pressure surfaces are

z = constant− Ω2

2g
(x2 + y2).
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But this means that the surface of a rotating bucket of water is at its highest in the middle.
What is wrong?

Write down the Euler equations in component form, integrate them directly to find p and hence
find the correct shape of the free surface. (Problem 1.2 in Acheson)
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