Fluids & Plasmas, AA 363

Problem Set I: Fluid Kinematics, Vorticity, Equilibrium

. Streamlines: Let the streamlines of a time-independent 2-D flow on R? be given by (u,v) =
(ax, —ay). Sketch the streamlines. Express, as a function of time, the trajectory of a fluid
element starting at (1,1) at ¢ = 0. How does the density of this fluid element vary as a function
of time? How do the sides of a rectangular fluid element vary as it moves along streamlines?

. Volume and Density: Consider a fluid element with density pg centered at (zg, yo, z0). Assume
that the fluid element flows to (z,y, z) at a later time. Show that the density p at the later time
is related to pg as
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where the right-hand-side denotes the Jacobian connecting the two volume elements (adapted
from Batchelor).

. Euler Equations in Conservative Form: Starting with the standard form of Euler equations,
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derive the conservative form of Euler equations,
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where the sumbols have their usual meaning. Why is this the conservative form?

. Self-gravitating, Rotating Disk: A useful model for the warm interstellar medium (ISM) is
that it is a rotating, self-gravitating, equilibrium flow in form of a thin disk. Under the thin disk
approximation the vertical and radial directions are decoupled. The vertical force and Poisson’s
equations are given by
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Assuming WIM to be isothermal (constant temperature 7') show that the density have a p =
posech?(z/zy) profile in the z— direction. Express z in terms of T', py and G.

. Potential Flows in 2D: For incompressible and irrotational flows, V-i%=V xi@=0. This
implies that # can be written as —§¢ (where ¢ is called the velocity potential) and the incom-
pressibility condition implies V¢ = 0; i.e., ¢ satisfies the Laplace’s equation. From your studies
of electrostatics, recall that this equation can be solved if we specify the value of ¢ (Dirichlet
BC) of 9¢/0n (Neumann BC) at the boundaries. Now, solve for the steady streamlines for a
flow past a spherical surface of radius a. The normal velocity at the surface of the sphere should
vanish.

. Rotating Bucket: An ideal fluid is rotating under gravity g with constant angular velocity (2,
so that relative to fixed Cartesian axes 4 = (Qy, Qx,0). We wish to find the surfaces of constant
pressure, and hence the surface of a uniformly rotating bucket of water (which will be at the
atmospheric pressure).

‘By Bernoulli,” p/p + u%/2 + gz is a constant, so the constant pressure surfaces are
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But this means that the surface of a rotating bucket of water is at its highest in the middle.
What is wrong?

Write down the Euler equations in component form, integrate them directly to find p and hence
find the correct shape of the free surface. (Problem 1.2 in Acheson)



