
Fluids & Plasmas, AA 363

Problem Set III: Viscous Flows, Gasdynamics

1. Taylor-Couette flow: Consider a viscous fluid between two infinite co-axial cylinders with
radii a and b. If the two cylinders are rotated with Ωa and Ωb respectively, determine the
velocity distribution between the cylinders. You will need to write the Navier-Stokes equation
in cylindrical coordinates. Now assume that the outer cylinder is non-rotating and the inner
cylinder suddenly started into rotation with angular velocity Ω from a state of rest. Describe
how the vorticity changes in time. (adapted from Arnab’s book & Acheson).

2. Stokes drag & terminal speed: A rigid ball of radius a falls inside an infinite viscous fluid in
a constant gravitational field. Using the form of Stokes viscous drag (using dimensional analysis)
write down the equation of motion and show that the ball attains a terminal velocity ∝ a2; i.e.,
a smaller ball falls more slowly (adapted from Arnab’s book).

3. Viscous flow layers: Two incompressible viscous flows of the same density ρ flow, one on top
of the other, down an inclined plane making an angle α with the horizontal. Their viscosities
are µ1 and µ2, the lower fluid is of depth h1 and the upper fluid is of depth h2. Show that

u1(y) = [(h1 + h2)y − y2/2]
g sinα
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,

so that the velocity of the lower fluid u1(y) is dependent on the depth h2, but not the viscosity,
of the upper fluid. Why is this?

4. Energy dissipation: Consider an incompressible fluid in the absence of a body force; i.e.,
~F = 0. Starting from the Navier-Stokes equation with the viscous term show that the rate of
change of kinetic energy density of the fluid is
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Argue from this that the rate of energy dissipation per unit volume is given by
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on using the definition of Πij . This term represents that fact that the kinetic energy is dissipated
due to viscosity (friction between layers), and the internal energy increases at its expense. This
is very similar to the problem in HW1 where internal energy density equation was derived from
Boltzmann equation (adapted from Arnab’s book).

5. Shock jump conditions: Use the Rankine-Hugoniot relations to show that the downstream
Mach number M2 at a shock obeys the following:
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and show that this relation can be written as X1X2 = 1, where
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Express ρ2/ρ1 and p2/p1 in terms of X1. What is the allowable range of X1? Show that the
entropy change through the shock is given by
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]
and deduce that only compressive shocks (ρ2 > ρ1) occur in nature (from Pringle & King).

6. Spherical/Bondi accretion: A fluid flow with radial velocity u(r) and density ρ(r) repre-
sents the steady, spherically symmetric (Bondi) accretion of isentropic fluid from a surrounding
medium of uniform density ρ∞ onto a gravitating point mass M centered at the origin (r = 0).
Show that u(r) and the adiabatic sound speed cs(r) obey the following equation:
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and find the corresponding equation for dcs/dr. Show that at the radius r at which the flow is
trans-sonic, the velocity is given by u2 = GM/2r. Verify that at large radii the equations permit
a solution of the form u → 0 and ρ → ρ∞ as r → ∞. Verify that at small radii the equations
permit a solution of the form u2 ∼ GM/r and u2 � c2s as r → 0, provided that the ratio of
specific heats, γ, is such that γ < γcrit, where the value of γcrit is to be determined (from Pringle
& King).
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