
Fluids & Plasmas, AA 363

Problem Set IV: Waves and Instabilities

1. RTI in a stratified atmosphere: Consider a pressure-supported, hydrostatic gas against
gravity. How does the pressure vary as height in equilibrium? Now we want to carry out a linear
stability analysis by assuming the perturbations to vary as exp(−iwt + ikxx + ikyy) as the x−
and y− directions are homogeneous but not the z− direction. To simplify the calculation we
assume ~∇ · ~u = 0. Write down the linearized versions of equations of mass conservation and
momentum in the three directions. Set up an eigenvalue problem in the vertical direction in
terms of the perturbed density ρ1. Solve the eigenvalue problem (i.e., obtain the growth rate)
using the boundary condition that uz vanishes at z = 0, L and the equilibrium density given by
ρ = ρ0e

x/a. For what sign of a is the equilibrium stable? Which is the fastest growing mode for
a given ~k? How does the growth time compare with the free-fall time? Not that the set up here
is different from the two interfaces separated by an interface, that we considered in class.

2. Group and phase velocity: Recall the dispersion relation for internal gravity waves that we
derived in class

w2 =
k2⊥
k2
N2,

where N is the Brunt-Vaisala frequency and ~k⊥ = kxx̂+ kyŷ. Calculate the phase velocity and
the group velocity for these waves and show that the directions in which the crest/troughs travel
is perpendicular to the direction in which the energy is transported.

3. Particle paths for surface-gravity waves: Show that the perturbed velocities for surface
gravity waves can be written as

u = Aweky cos(kx− wt); v = Aweky sin(kx− wt); (y < 0)

where symbols have their usual meanings. Assuming that fluid elements depart only a small
amount (x1, y1) from their equilibrium values, show that the particle paths are circular and that
the radius of the circle decreases with depth.

4. Surface gravity waves with finite depth: Show that the dispersion relation for the surface
waves in a fluid of uniform depth h is

w2 = gk tanh(kh),

where symbols have their usual meanings.

5. Wave propagation: Surface waves generated by a mid-Atlantic storm arrive at the British
coast with period 15 seconds. A day later the period of the waves arriving has dropped to 12.5
seconds. Roughly how far away did the storm occur (from Acheson)?

6. Steady corrugated flow: Water flows steadily with speed U over a corrugated bed y =
−h + ε cos kx, where ε � h, so that there is a time-independent disturbance η(x) to the free
surface, which would be at y = 0 but for the corrugations. By writing

u = U +
∂φ

∂x
, v =

∂φ

∂y
,

where φ(x, y) is the velocity potential of the disturbance to the uniform flow, show that the
linearized boundary conditions are

U
dη

dx
=
∂φ

∂y
, U

∂φ

∂x
+ gη = 0 on y = 0,

∂φ

∂y
= −Ukε sin kx on y = −h,
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and hence find η(x). Deduce that crests on the free surface occur immediately above troughs on
the bed if

U2 <
g

k
tanh(kh),

but that if this inequality is reversed the crests on the surface overlie the crests on the bed (from
Acheson).

7. Inertial waves in a rotating flow: Suppose an inviscid incompressible fluid is rotating uni-
formly with angular velocity ~Ω, and take Cartesian axes fixed in a frame rotating with that
angular velocity. Assume (can you motivate this?) that the small velocity ~u1 relative to the
rotating axes satisfies,

∂ ~u1
∂t

+ 2~Ω× ~u1 = −1

ρ
~∇p1,

where p1 is the ‘reduced pressure.’ Write out these equations in Cartesian components, taking
~Ω = (0, 0,Ω), and eliminating u1, v1 and w1 show that[

∂2

∂t2

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
+ 4Ω2 ∂

2

∂z2

]
p1 = 0.

Hence show that plane waves ∝ ei(kx+ly+mx−wt) are possible if

w2 =
4Ω2m2

k2 + l2 +m2
,

and deduce that the group velocity of a packet of such waves is perpendicular to the phase
velocity (from Acheson).
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