
Fluids & Plasmas, AA 363

Problem Set VII: plasmas as fluids, MHD, instabilities

1. Electric field and hydrostatic equilibrium: Consider an isothermal atmosphere of plasma
in a constant gravitational field ~g. Assuming the ions to be singly ionized, write down the force
balance equations for the electron and ion fluids. Show that they can be combined to give the
usual hydrostatic equation, but an electric field
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has to exist in the atmosphere to prevent charge separation. Contrast this with the case of a
gas composed of lighter and heavier molecules, in which the scale height of the lighter molecules
is larger. The strong electric field in a plasma created if there is charge separation ensures that
the two components (electrons and ions) have the same number density. (adapted from Arnab’s
book)

2. Energy conservation in MHD: Assuming ideal MHD (i.e., no conduction, viscosity and
resistivity) show that the fluid energy conservation equation can be written as
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where ε = p/[ρ(γ− 1)] is the thermal energy per unit mass, w = ε+ p/ρ is the enthalpy per unit

mass, and
←→
M = B2←→I /8π− ~B ~B/4π is the Maxwell stress tensor. Obtain the equation governing

the magnetic energy density (B2/8π) using the induction equation and show that
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This shows that the total energy in the box, which includes the magnetic energy, is conserved if
there are no energy fluxes from the boundaries. This is true even in the presence of viscosity and
resistivity (and thermal conduction) because these processes just convert kinetic and magnetic
energy into thermal energy (redistribute thermal energy). (adapted from Arnab’s book)

3. Flux freezing: Consider a constant initial magnetic field ~B = B0ŷ in a conducting plasma.
Suppose a velocity field

~v = v0e
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is switched on at t = 0. Find out how the field lines evolve at later times. Also make the sketches
for filed lines at some time after switching on the velocity field. (from Arnab’s book)

4. MHD shocks: Consider a shock wave with uniform magnetic fields B1 and B2 parallel to
the shock front on the two sides (velocity is perpendicular to the shock front). Write down
the modified Rankine-Hugoniot jump conditions (including the components of magnetic field)
relating the upstream and downstream quantities.

5. Rotating magnetized solar wind: Consider the magnetized solar wind in the equatorial
plane. Neglect viscosity and resistivity, and assume a steady state. From induction equation,
show that the components of magnetic and velocity fields at a distance r are related by
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where Ω� is the angular velocity of the sun. From the φ component of the equation of motion,
show further that
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is a constant and can be interpreted as angular momentum per unit mass carried by the plasma
and fields (remember e.m. fields carry angular momentum). Combine the two equations to show
that
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where MA = vr/(
√
B2
r/4πρ) is the Alfvén Mach number. Argue on the basis of this equation

that angular momentum per unit mass carried away by the solar wind is L = Ω�r
2
A, where rA

is the Alfvén radius where MA = 1. (from Arnab’s book)

6. Magnetorotational instability (MRI): is a linear instability that is widely believed to be
responsible for (MHD) turbulence in accretion flows (i.e., the physical cause behind the phe-
nomenological α-viscosity). Write down the linearized MHD equations in which the mean flow
is in the φ̂ direction given by vφ0(R) = RΩ(R) (ignore the vertical variations in all background
quantities; this is justified for modes with wavelengths much smaller than the disk scale height).
Assume a background magnetic field in the ẑ direction, ~B0 = B0ẑ. Assume the perturbed quan-
tities to vary as e−iwt+ikz (i.e., only vertical wavenumbers). Assume incompressibility ~k ·~v1 = 0,
which implies that vz1 = 0 (and also that the perturbed pressure and Bz1 vanish). Derive the
following linearized equations:
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4πρ0) is the Alfvén (perturbed) speed, Ω(R) is the local
rotation frequency and κ2 ≡ 4Ω2+dΩ2/d lnR is the local epicycle frequency. Derive the following
dispersion relation for the local modes:
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Show that there are growing modes (MRI) if dΩ2/dR < 0. Show that the fastest growth rate is
|dΩ/2d lnR| and it occurs at
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Calculate the fastest growth rate and the most unstable wavenumber for a Keplerian flow.
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