Graphing Seed Removal Data in Open Office

1. First, we need to think about the types of comparisons we will be making so we know what averages and standard errors (SE) to calculate. We were interested in differences in removal rates between the two seed types, so we want to calculate the average removal each day for each seed type. Additionally, we were interested in potential differences in removal among the different habitats (i.e. forest vs. steppe), so we probably want to separate the seeds removed each day by habitat as well. Below, you will see I calculated the average removal and SE for each seed type in each habitat for each day. At the end, I calculated the average removal and SE for each seed type and each habitat ACROSS the 5-day span.

	OpenOf	ice File	Edit Viev	v Insert	Forma	t Tools	Data	Window	Help			2	88 - 6		29%
•	0							sec 1 seed	removal	.xlsx - Op	enOffice C	alc			
1	- 볼 - 🔛 (s 📝 🔒	占 🕓 👋	abc 🔀	🖣 🛱 • 🕯	of 19 -	e - 🕹	ZU ZU	止 🅢 🕯	HL 🧭 🧰	9 🔍 🔮	Find		ኑ 🕆 🚬	
90	Calibri		• 11	-	ΙU	E Z 3		\$ % 🌡	% 000 %	¢ ¢	- • 🖄 •	<u>A</u>			
A15	A15 \mathbf{y} $\mathbf{x} = \mathbf{D} \mathbf{a} \mathbf{y}$														
	Α	В	С	D	E	F	G	н	1	J	K	L	м	N	0
1			Day 1		Day 2		Day 3		Day 4		Day 5				
2		Habitat	Pea	Wheat	Pea	Wheat	Pea	Wheat	Pea	Wheat	Pea	Wheat			
3		Forest	0	0	0	0	0	2	0	0	0	1			
4		Forest	2	1	. 1	0	0	0	0	0	0	0	Overall		
5		Forest	1	0	0	0	1	0	0	0	1	0	Pea	Wheat	
6	Daily	Average	1	0.33333	0.33333	0	0.3333	0.66667	0	0	0.33333	0.333333	0.4	0.266667	Average
7		SE	0.57735	0.33333	0.33333	0	0.3333	0.66667	0	0	0.33333	0.333333	0.163299	0.124722	SE
8		Steppe	3	1	. 1	0	0	0	0	0	0	2			
9		Steppe	0	7	1	0	0	1	0	0	0	9	Overall		
10		Steppe	2	15	0	18	0	6	2	8	3	5	Pea	Wheat	
11	Daily	Average	1.66667	7.66667	0.66667	6	0	2.33333	0.6667	2.66667	1	5.333333	0.8	4.8	Average
12		SE	0.88192	4.05518	0.33333	6	0	1.85592	0.6667	2.66667	1	2.027588	0.270801	1.014342	SE
13															

2. When it comes to graphing, having your data organized in a condensed, organized manner will make things easier in the long run. It is worth taking time to organize your data after you calculate averages and SEs. It is important to first decide what you want to show with your graph, and this will determine how you organize your data. I am interested in showing the average removal on each of the 5 days for each combination of seed type. This will allow me to see if there is more removal on a certain day and also to see if a certain type of seed was removed more frequently. Below, I made a heading for each combination of seed type and habitat and copied the average removal. I repeated the process for the SEs. These are the same numbers, just in a condensed format.

	• 볼 • 🔚 🖂	b 📑 🖴 👌	× 🛍	b (1	Cha	rt Area		* *	Format	Selection	†	
	Α	В	С	D	E	F	G	н	1	J	К	L
12		SE	0.88192	4.05518	0.33333	6	0	1.85592	0.6667	2.66667	1	2.0275
13												
14			Removal						SE			
15	Day	Pea (Fores	Pea (Step	Wheat (Wheat (S	teppe)	Day	Pea (Fo	Pea (Stø	Wheat (🕨	Wheat (S	Steppe)
16	1	1	1.66667	0.33333	7.66667		1	0.57735	0.8819	0.33333	4.05518	
17	2	0.333333	0.66667	0	6		2	0.33333	0.3333	0	6	
18	3	0.333333	0	0.66667	2.33333		3	0.33333	0	0.66667	1.85592	
19	4	0	0.66667	0	2.66667		4	0	0.6667	0	2.66667	
20	5	0.333333	1	0.33333	5.33333		5	0.33333	1	0.33333	2.02759	
2.1												

3. Now that the data are arranged, we can begin making the graph. We should highlight the data we want to display (the removal columns) and pick the type of graph we want. A line graph is probably most appropriate for this example. It is also worth stopping at 3. After selecting Line Graph, click next until you get to 3. Data Series. Here, you can make sure your graph displays the appropriate groups.

You can see below that I accidentally highlighted the Day column, so the program added in Day as one of my dependent variables. I deleted this series before continuing.

4. You can keep clicking 'Next' until you get to 4. Chart Elements. This is where you can add X and Y axis Labels. Once you name your axes, click Finish.

Ś	OpenOf	ffice	File Edit Vi	ew Inse	rt Fo	rmat T	ools Wind	low Hel	р				- 68 - 4	1	* (:
00	0							sec 1 see	d remova	al.xlsx – Op	oenOffice	Calc			
2	- 📴 - 🔜 🛛		8 × 5 🕯	96	. ! [4	Forma	at Selection	?		∎.		
	Α		B C	D	E	F	G	н	1	J	K	L	M		N
1			Day 1		Day 2		Day 3		Day 4		Day 5				
2		Habi	Doo	W/hoot	Doo	Whee	at Doo	What W	Doo	W/hoat	Doo	Wheat	1		
3		Fore	00					Chart Wi	zaru				and the second second		
4		Fore	Steps			Choose	titles. leaer	nd. and ar	id settir	nas					
5		Fore					_				de				
6	Daily	Aver	1. Chart Type			Title						splay legend			
7		SE	2. Data Range			Subtitle					0	Left			
8		Step	2 Data Series									Picht			
9		Step	5. Data Series			Vaula	Davi				•	Right			
10		Step	4. Chart Eleme	nts		x axis	Day				0	Тор			- 10
11	Daily	Aver				Y axis	Number 5	eds Remo	ved		0	Bottom			- 10
12		SE									0				- 10
13						Z axis									
14						Display o	arids								
15	Day	Pea (Dispiny ;									-
16		1				🗌 X axi	s 🗹 🖌	r axis	Za	xis					-
17		2 0.3													-
18		3 0.3									_				_
19	· · · · ·	4	Help				<<	Back	Ne	xt >>	Fi	nish	Car	ncel	
20		5 0.3	55555	10.0000	5.55			-	-			-			
21							0						-	-	
22						_	1		2		3	4		5	
23									_						
24										Da	ıy				

5. You now have a graph, but no error bars. Making sure your graph is selected, go to Insert on the top menu and select Y Error Bars to add your error bars.

	OpenOff	ice File	Edit Vie	w Inser	t Forma	at Tool	s Wind	ow Help)		
0	0			Tit	les			sec 1 seed	removal.	xlsx – Ope	enOffice (
. 8	- 🖻 - 🔒 🖂		x ħ ŵ	کا Ax	gend es			Å	Format	Selection	eb 111
	Α	В	С	Gri	ds		G	Н	- I	J	K
9		Steppe	0	_			0	1	0	0	C
10		Steppe	2	Da	ta Labels.		0	6	2	8	3
11	Daily	Average	1.66667	7.1 Ire	and Lines.		C	2.33333	0.6667	2.66667	1
12		SE	0.88192	4.(Me	an value	Lines	0	1.85592	0.6667	2.66667	1
13				Y E	rror bars.						
14			Removal	Sp	ecial Chai	racter			SE		
15	Day	Pea (Fores	Pea (Step	Wheat (wneat (:	teppe)	Day	Pea (Fo	Pea (Stø	Wheat (Wheat (
16	1	. 1	1.66667	0.33333	7.66667		1	0.57735	0.8819	0.33333	4.05518
17	2	0.333333	0.66667	0	6		2	0.33333	0.3333	0	6
18	3	0.333333	0	0.66667	2.33333		3	0.33333	0	0.66667	1.85592
19	4	. C	0.66667	0	2.66667		4	0	0.6667	0	2.66667
20	5	0.333333	1	0.33333	5.33333		5	0.33333	1	0.33333	2.02759
21						· .					
22						•					
23		1	0					_			
24		pa .	-								
25		Not Not	8					-			
26		Ser									
27		s s	0					▶ →	– Pea (Forest)	
28		- Sed	4						Pea (Steppe)	
29		Ň				-			- Whea	t (Forest))
30		pe	2					'⊥ →	— Whea	t (Steppe	•)
31		E I						4			
32		z	1	2	3	4		5			
33		1		2	5	-		5			
34		1			Day						
		11									

6. Since we want our error bars to show the SE, we need to click Cell Range so we can choose the specific SEs we calculated. We do this by highlighting the SEs we calculated for each seed/habitat combination. Make sure they are arranged in the same order as the removal data so you get the correct removal and error matchup.

	Ś	OpenOffice	File Edi	t View	Insert	Format	Tools	Window	Help				🕹 🖇	🕹 👈 🕑	* 🤅	۲ 🖉
			11 <u>1</u>													
	0 C	0						🔤 s	ec 1 seed	removal.	xlsx - Ope	enOffice C	alc			
	2	• 🕼 • 🔒 🖂	BA)	< 🔓 🛍	b G	Char	rt Area		Å	Format	Selection			₫.		
		Α	В	С	D	E	F	G	Н	1	J	K	L	м	N	
	9		Steppe	0	7	1	0	0	Sele	ct Range	for Positive	Error Ban	rs: Area	-1		
	10		Steppe	2	15	0	S'1-6	5' \$H\$16.	\$K\$20							
	11	Daily	Average	1.66667	7.66667	0.66667									<u>•</u> 174	1208
	12		SE	0.88192	4.05518	0.33333	6	0	1.85592	0.6667	2.66667	1	2.02758	8		
	13															
	14			Removal						SE						
	15	Day	Pea (Fores	Pea (Step	Wheat (Wheat (S	Steppe)	Day	Pea (Fo	Pea (Stø	Wheat (🕨	Wheat (S	Steppe)			
	16	1	1	1.66667	0.33333	7.66667		1	0.57735	0.8819	0.33333	4.05518				
	17	2	0.333333	0.66667	0	6		2	0.33333	0.3333	0	6				
	18	3	0.333333	0	0.66667	2.33333		3	0.33333	0	0.66667	1.85592				
	19	4	0	0.66667	0	2.66667		4	0	0.6667	0	2.66667				
	20	5	0.333333	1	0.33333	5.33333		5	0.33333	1	0.33333	2.02759				
-	21		•													
	22		-													
	23		10) (7							
	24		, ved	, 1												
	25		Ê	, k					1							
	26		e de													

7. Click OK and voila! You have your graph with error bars.

ř.	- 🔀 - 🔒 🖂) 🗟 🖴 👌	< Fa 🛱	5 0	• Cha	rt Area		÷	Format	Selection	9	E E 6
	Α	В	С	D	E	F	G	Н	1	J	К	L
12		SE	0.88192	4.05518	0.33333	6	0	1.85592	0.6667	2.66667	1	2.0275
13												
14			Removal						SE			
15	Day	Pea (Fores	Pea (Step	Wheat (Wheat (Steppe)	Day	Pea (Fo	Pea (Stø	Wheat (🕨	Wheat (S	Steppe)
16	1	1	1.66667	0.33333	7.66667		1	0.57735	0.8819	0.33333	4.05518	
17	2	0.333333	0.66667	0	6		2	0.33333	0.3333	0	6	
18	3	0.333333	0	0.66667	2.33333		3	0.33333	0	0.66667	1.85592	
19	4	0	0.66667	0	2.66667		4	0	0.6667	0	2.66667	
20	5	0.333333	1	0.33333	5.33333		5	0.33333	1	0.33333	2.02759	
21												
22		ľ.				-						
23		10)					_				
24		eq										
25		j Š 8	3					-				
26		Ren										
27		sr (,					E –	- Pea (Forest)		
28		• ĕĕ 4	1						Pea (Steppe)		
29		S S							- Whea	it (Forest))	
30		pdr 7						, →	Whea	it (Steppe		
31		57 (*				
32		<u> </u>	1	2	3	4		5				
33				_	Devi			-				
34					Day							
35						•					-	
36												
37												

Below, I'll show how to make a bar graph that compares removal rates ACROSS all 5 days for each seed/habitat combination.

1. Again, organize your data.

	OpenOffi	i ce File	Edit View	Insert	Format T	ools Data	Window Help			🕹 👯	5 - O - X	
0	0					🔤 S	ec 1 seed removal.	xlsx - Open	Office Calc			
1	- 🔀 - 🔛 🖂	a 📝 🔒	🖴 🔍 崎	🎎 🔀 🖶	💼 • 🎸 🖺	D•@• 🔒	24 🕺 🏙 🥓 🕯	1 🧭 🖻 🗟	9.	Find	• 🕹 论	•
9.	Calibri		v 11	• B	/⊻≣∃		‱. ‱. *** % <u>اا</u>	é 🤅 🗖	• <u>@</u> • <u>A</u>	•		
V5		▼ ⅔	∑ = SE									
	L	м	N	0	Р	Q	R	S	Т	U	v	W
1												
2	Wheat											
3	1											
4	0	Overall										
5	0	Pea	Wheat				Removal				SE	
6	0.333333	0.4	0.266667	Average		Habitat	Pea	Wheat		Habitat	Pea	Wheat
7	0.333333	0.163299	0.124722	SE		Forest	0.4	0.266667		Forest	0.4	0.266667
8	2					Steppe	0.8	1.014342		Steppe	0.8	1.014342
9	9	Overall										
10	5	Pea	Wheat									
11	5.333333	0.8	4.8	Average								
12	2.027588	0.270801	1.014342	SE								
13												
14												
15	iteppe)											
16												
17												
18												

2. Highlight the appropriate data (and labels) and insert a new chart. A bar graph would best display these data. Follow the rest of the steps you followed for the line graph (e.g. make sure you have the correct data represented by your series and name your axes).

3. Repeat the same steps as above to insert error bars

4. Now you have another pretty graph!

*** Please note that these are just a few examples of acceptable graphs for the paper. Your graphs may vary depending on what your specific hypotheses address. This is just meant to be a tutorial that introduces you to the tools you need to make graphs. *******

Analyzing Seed Removal Data in Open Office

Graphing your results is a good place to start when it comes to making conclusions from the data you collected from the seed removal experiment, but we need to actually run statistics to see if differences among our treatments are statistically significant. When comparing two groups, a t-test is an easy test to use.

Say we want to see if there is a significant difference in removal of pea seeds in the forest vs. the steppe habitat:

1. The function in Open Office for a t-test is simply TTEST(data set 1, data set 2, mode, Type). Below is a screen shot explaining the syntax.

M (no subject) - ama	anda.mea × 😌 Documentation/How Tos/ × +		
+ https://wiki.ope	enoffice.org/wiki/Documentation/How_Tos/Calc:_TTEST_function	ice P	☆自 ◀
	il 🦸 Washington State Univ. 🔤 Weather 🚥 NDP. 🗟 Sirius VM 📾 ESA Ecotona 🗜 Dandara 🖑 Travel 🖻 Esceback 🛠 Dia 572 🗌 N	Intal ib @ DIOL 272	
Viso e-main (-4 official	Construction and the second	etacibio 🔛 bioc 572	
			CALC FI
	Contents [hide]		Statisti
	1 TIEST		< Provious
	11 Svntax		ST TEVIOUS .
	12 Example:		FUNCTIO
	Le compre		Measures
	TTECT		= Aveda
	11231		= Avera
	Returns the result of a Student's t-test.		Avera
			Count
	Syntax:		= Counta
	TTRST(data1: data2: mode: type)		Hearm
	LINE (decer, decer, mode, clic)		Mediar
	data1 and data2 are ranges or arrays (possibly of different size) containing numbers, on which the t-test is performed		Mode Trimme
	mode is		Measures
	1 for a one-tailed t-test		spread
	2 for a two-tailed t-test.		- Down
			= Kurt
	type Is		Skew
	1 for paired samples		 Stdev
	2 for two samples with equal variance		= Stedey
	3 for two samples with unequal variance.		 Stdevp
	Advanced topic:		 Var
	The parameters data1 and data2 are always evaluated as array formulas.		Vara
			= Varpa

Here is what it would look like in Open Office:

Using mode=2 means we are conducting a two-tailed test, so we are testing if removal from the forest is higher OR lower than in the steppe (a one-tailed test would only test for one direction). Using type=3 means we are allowing our two samples (forest vs. steppe) to have unequal variances.

2. Hit enter and Open Office will return a P-value for the t-test. Remember when p<.05, you have a significant difference among your treatments. In this example, there is no significant difference.

		OpenOffice	e File Edit	View Insert F	ormat Tools D	Data Window
	0	0			🗟 sec 1	seed removal for I
	1	- 🛃 - 🔛 🖻	a 📝 🗟 占 (9. 💖 ጅ 📈 🖣	a 🛍 • 🎸 🦻 • C	° - 🚳 🎝 🖁 [
	9.	Calibri	•	11 v B	/ <u>U</u> ≣≣≣	≣ 📰 📕 % 💱
	B2	6	▼ 7 × ∑	=		
1		Α	В	С	D	E
	13					
ł	14			Removal		
1	15	Day	Pea (Forest)	Pea (Steppe)	Wheat (Forest)	Wheat (Steppe)
	16	1	L	1 1.666666666	7 0.3333333333	7.666666666
	17	2	0.3333333333	3 0.666666666	7 ()
Ĩ	18	3	0.333333333	3	0 0.6666666667	2.333333333
l	19	4	l I	0 0.666666666	7 (2.666666666
l	20	5	0.3333333333	3	1 0.3333333333	5.333333333
l	21	p value	0.248922625	4		
	22					
	23					

What if you want to see if there is a relationship between distance from the center of the forest (i.e. the beginning of our transect) and seed removal?

1. A linear regression would be an appropriate test for this question. You would use the function LINEST for this test. The syntax can be found in the screenshot below. LINEST is an array function, meaning it gives you a table of output, not just a p-value (for example). The table is also in the syntax below. Note that you do not get a p-value in the output, but you do get enough information to calculate one on your own.

			Longest		
Returns a table of statistics for a straight line that best fits a data set.		- 12	Vinverse		
Syntax: JINEST(yvalues; xvalues; allow_const; stats)			Vimult Viunit Sumproduct /Sumx2my2 Sumx2ov2		
yvalues is a single row or column range specifying the y coordinates in a set of data points.			Sumxmy2		
xvalues is a corresponding single row or column range specifying the x coordinates. If xvalues is omitted it defaults to 1, n. If there is more than one set of variables xvalues may be a range with corresponding multiple rows or columns.	, 2, 3,	< Prev	Trend		Next Page :
1.10537 finds a straight line $v = a + by$ that best fits the data using linear regression (the "least squares" method). With mo	re than one				
set of variables the straight line is of the form $y = a + b_1x_1 + b_2x_2 \dots + b_nx_n$.					
set of variables the straight line is of the form $y = a + b_1x_1 + b_2x_2 \dots + b_nx_n$. if allow_const is FALSE the straight line found is forced to pass through the origin (the constant <i>a</i> is zero; $y = bx$). If omil through the origin).	ted, allow_cons	t defaults	to true (t	he line is r	not force
set of variables the straight line is of the form $y = a + b_1x_1 + b_2x_2 \dots + b_nx_n$. if allow_const is FALSE the straight line found is forced to pass through the origin (the constant <i>a</i> is zero; $y = bx$). If omit through the origin). LINEST returns a table (array) of statistics as below and must be entered as an array formula (for example by using Cntri -	ted, allow_cons	t defaults	to TRUE (t Enter)	he line is r	not force
set of variables the straight line is of the form $y = a + b_1x_1 + b_2x_2 \dots + b_nx_n$. if allow_const is FALSE the straight line found is forced to pass through the origin (the constant <i>a</i> is zero; $y = bx$). If omit through the origin). LINEST returns a table (array) of statistics as below and must be entered as an array formula (for example by using Chtri- If stats is omitted or FALSE only the top line of the statistics table is returned. If TRUE the entire table is returned.	ted, allow_cons Shift-Enter rather	t defaults than just I	to TRUE (t Enter)	he line is r	not force
Set of variables the straight line is of the form $y = a + b_1x_1 + b_2x_2 \dots + b_nx_n$. if allow_const is FALSE the straight line found is forced to pass through the origin (the constant <i>a</i> is zero; $y = bx$). If omit through the origin). LINEST returns a table (array) of statistics as below and must be entered as an array formula (for example by using Cntri- If stats is omitted or FALSE only the top line of the statistics table is returned. If TRUE the entire table is returned. b_1 to b_n are the line gradients; <i>a</i> is the y-axis intercept.	ted, allow_cons Shift-Enter rather b _y	t defaults than just i b ₌₁	to TRUE (t Enter)	he line is r b ₁	not force
Set of variables the straight line is of the form $y = a + b_1x_1 + b_2x_2 \dots + b_nx_n$. if allow_const is FALSE the straight line found is forced to pass through the origin (the constant <i>a</i> is zero; $y = bx$). If omit through the origin). LINEST returns a table (array) of statistics as below and must be entered as an array formula (for example by using Cntri- If stats is omitted or FALSE only the top line of the statistics table is returned. If TRUE the entire table is returned. <i>b</i> ₁ to <i>b</i> _n are the line gradients; <i>a</i> is the <i>y</i> -axis intercept. σ_1 to σ_n are the standard error values for the line gradients; σ_n is the standard error value for the <i>y</i> -axis intercept.	ted, allow_cons Shift-Enter rather $b_x = \sigma_x$	than just E b_{n-1}	to TRUE (t Enter) 	he line is r $\frac{b_I}{\sigma_I}$	not force $\frac{a}{\sigma_{a}}$
Set of variables the straight line is of the form $y = a + b_1x_1 + b_2x_2 \dots + b_nx_n$. If allow_const is FALSE the straight line found is forced to pass through the origin (the constant <i>a</i> is zero; $y = bx$). If omit through the origin). LINEST returns a table (array) of statistics as below and must be entered as an array formula (for example by using Chtri- If stats is omitted or FALSE only the top line of the statistics table is returned. If TRUE the entire table is returned. b_1 to b_n are the line gradients; <i>a</i> is the y-axis intercept. σ_1 to σ_n are the standard error values for the line gradients; σ_a is the standard error value for the y-axis intercept.	ted, allow_cons Shift-Enter rather b_{π} σ_{π} r^2	than just E b_{n-1} σ_{y}	to TRUE (t Enter) 	he line is r b_I σ_I	not force $\frac{a}{\sigma_a}$
Set of variables the straight line is of the form $y = a + b_1x_1 + b_2x_2 \dots + b_nx_n$. If allow_const is FALSE the straight line found is forced to pass through the origin (the constant <i>a</i> is zero; $y = bx$). If omit through the origin). LINEST returns a table (array) of statistics as below and must be entered as an array formula (for example by using Chtri- If stats is omitted or FALSE only the top line of the statistics table is returned. If TRUE the entire table is returned. <i>b</i> ₁ to <i>b</i> _n are the line gradients; <i>a</i> is the <i>y</i> -axis intercept. σ_1 to σ_n are the standard error values for the line gradients; σ_a is the standard error value for the <i>y</i> -axis intercept. ρ^2 is the determination coefficient (RSQ); σ_y is the standard error value for the <i>y</i> estimate.	ted, allow_cons Shift-Enter rather $\frac{b_x}{\sigma_x}$ $\frac{r^2}{F}$	than just E b_{n-1} σ_{y} df	to TRUE (t Enter) 	he line is r $\frac{b_I}{\sigma_I}$	$\frac{a}{\sigma_a}$
Solution index definition $y = a + b_1 x_1 + b_2 x_2 \dots + b_n x_n$, set of variables the straight line is of the form $y = a + b_1 x_1 + b_2 x_2 \dots + b_n x_n$. if allow_const is FALSE the straight line found is forced to pass through the origin (the constant <i>a</i> is zero; $y = bx$). If omit through the origin). LINEST returns a table (array) of statistics as below and must be entered as an array formula (for example by using Chtri- If stats is omitted or FALSE only the top line of the statistics table is returned. If TRUE the entire table is returned. b_1 to b_n are the line gradients; <i>a</i> is the <i>y</i> -axis intercept. σ_1 to σ_n are the standard error values for the line gradients; σ_a is the standard error value for the <i>y</i> -axis intercept. r^2 is the determination coefficient (FISQ); σ_y is the standard error value for the <i>y</i> -estimate. <i>F</i> is the F statistic (F-observed value); <i>df</i> is the number of degrees of freedom.	ted, allow_cons Shift-Enter rather σ_{x} r^{2} F \mathcal{S}_{ref}	than just E b_{ml} σ_{ml} σ_{y} df ss_{reid}	to TRUE (t Enter) 	he line is r $\frac{b_{I}}{\sigma_{I}}$	a σ_a

2. To calculate a p-value, use the FDIST function. The syntax is FDIST(F value, df1, df2). Below is a screenshot of the output from the LINEST function and the FDIST syntax. The table gives the F statistic (3) and the denominator degrees of freedom (4). In linear regression the numerator degrees of freedom is the (number of terms in the model)-1, in our case that is 2-1. The two terms are the intercept and slope. So, FDIST(3;1;4) is the appropriate syntax here.

	Oper	Office	e File	Edit	View	Insert	Format	Tools	Data	Window	Help		
		-	and a second										
		00	0						1	sec 1 see	d remova	l for har	ndout.
		· 🗃	• / 🗷	×	2	≞ 🕵	ABC 💑 ≽	6 Pa 🛍	- 🎸 🛛) - C -	🚭 🛃	Å.	2/ (
		9 ,	Calibri			• 1	1 •	BI	J ≡ :	E ∃ ■	1	% \$ % <u>*</u>	000.000
-		FDI	ST		- Jx	¥ √	=FDIST(3;	1;4)					
			Α		В		С		D		E		F
		24	Distance										
		25		0		0							
		26		5		0.6							
		27		10		0.6							
	E	28		15		0.8							
		29		20		0.2							
		30		25		1.4			0.03428	57143	0.17142	85714	
		31							0.01979	48664	0.29965	96709	
		32							0.42857	14286	0.41403	93356	
		33								3		4	
		34						(0.51428	57143	0.68571	42857	
		35											
		36						=F	DIST(3;:	L;4)			
		37											
		38											

3. Hit enter and you will have your p-value

-

🐔 Ор	enC	office	File	Edit	View	/ Inser	t Format	Tools	Data	Window	Help		
		-	and a second								-		
1000		• •	0						1	sec 1 seed	l remova	l for ha	ndout
See.		1	• 📴 • 🔚	⊠⇒	2	à 占 🖻	ABC 📥 🁌	s 🖻 🛍	- 🚿) - (2 -	🛃 🍓	Z L	20
		Ŷ	Calibri			•	11 🔻	BI	U≡	E I	J	% %	000 .000
		F42			– j	Γχ Σ =							
1000	F		Α		l	3	С		D		E		F
		24	Distance	e									
		25		0		0							
		26		5		0.6							
		27		10		0.6							
	Ec	28		15		0.8							
		29		20		0.2							
		30		25		1.4			0.03428	57143	0.17142	285714	
		31							0.01979	48664	0.29965	96709	
		32							0.42857	14286	0.41403	893356	
		33								3		4	
		34							0.51428	57143	0.68571	42857	
		35											
		36					p value		0.15830	24234			
		37											
		38											