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Part 1: The Growth of a Yeast Population

For better or worse, the historical starting point for much of our current knowledge of pop-
ulation growth stems from an elegant group of laboratory experiments performed early in
this century by Carlson and later analyzed by Pearl. In these experiments the growth of
the populations of a variety of microorganisms and protozoans were followed through time.
Yeasts, for example, undergo rapid cell division in culture medium, and the growth of the
population follows a logistic growth curve. There is an initial phase of slow population
growth, a phase when the population grows very rapidly, and eventually a period when the
population reaches a maximum size, the Carrying Capacity or K. Even in the highly
artificial environment of a culture flask, the population does not remain at the maximum size
but declines because of resource limitations pathogens, etc.

Figure 1: A generic figure of logistic growth

In the first of two experiments, we will repeat the classic Carlson-Pearl experiment using
Baker’s yeast. You have probably noticed the ability of microorganisms to cloud initially
clear liquid if the container is left open at room temperature for several days. Although the
individual cells cannot be seen with the unaided eye, the microorganisms become so numerous
that the populations clouds the liquid. The extent of this cloudiness is directly proportional
to the number of microorganisms and thereby provides a convenient means to measure their
numbers using a spectrophotometer.
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A spectrophotometer accurately measures changes in a beam of light passing through a liquid.
The values may be measured either as transmittance (i.e., the amount of light that passes
through a medium when the initial amount of light is known) or as absorbance (the amount
of light absorbed by the medium). We will use absorbance in this lab, which varies from 0.0
(totally transparent) to 2.0 (opaque) on these instruments. As microorganisms become more
numerous in liquid culture they will block the light passed through the liquid. The amount
of light they block is directly proportional to their density, assuming the liquid is routinely
stirred or shaken.

Procedure

A yeast culture can take several hours to grow to measurable densities, but by 48 h it is
probably reaching its maximum density (or even starting to decline). Consequently, the TAs
will have set up series of cultures over the previous days with ages from 1 h to 2 days. The
date and time when these cultures began growing is indicated on the flask. Your job, then,
is simply to measure the densities (absorbance) of the several ages of cultures.

Figure 2: The spectrophotometer

1. Calibrate the Spectrophotometer:

a. Turn on the Power Switch and allow the instrument to warm up for at least 15
min. (This will probably have been done for you.)

b. Set the Wavelength Control at 540 nm, a wavelength at which microorganisms
absorb light.

c. Set the instrument in the Transmittance mode by pressing the Mode control
until “Transmittance” is seen on the lighted display.

d. With the sample compartment closed (and without a sample in the chamber) zero
the instrument using the Power Switch/Zero control.
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IMPORTANT: In the next steps care must be taken that nothing is spilled into the
cuvette chamber in the spectrophotometer.

e. Change the Mode to Absorbance.

2. Calibrate with a reference blank. In our case the blank will be a cuvette of the
culture media that has not been inoculated with yeast.

a. Wipe a cuvette clean with Kimwipes and then fill it about 3/4 full. Be careful
not to spill any of the medium on the outer walls of the cuvette. Also be careful
to handle the cuvette with Kimwipes only. (Finger prints will block the light and
cause error.)

b. Insert the reference blank in the sample chamber. Make sure the index line on
the cuvette is aligned with the mark on the cuvette holder. The cuvettes should
never be twisted once they are placed in the spectrophotometer. (Twisting causes
scratches which in turn causes permanent error with the cuvette).

c. Adjust the display to 0% absorbance using the Transmittance/Absorbance Con-
trol.

d. Remove the blank cuvette. Cuvettes should be cleaned only with repeated rinsing
and then dried with Kimwipes. (Brushes should never be used.) Cuvettes should
be stored in their container when not in use and should not be left lying on the
counter tops. The same cuvette should be used for all readings by each group of
students in the lab section.

3. Measure the absorbance of each yeast culture. Be sure to swirl the culture flask
or tube to avoid settling, then fill the cuvette 3/4 full with a sample from a previously
inoculated flask. Place the sample in the chamber and read the Absorbance.

4. Repeat with all of the cultures, recording the absorbance for each.

Part 2: The Growth of a Lemna Population

If given unlimited resources, a population of any species can rapidly grow at a rate limited
only by its intrinsic ability to reproduce (age of first reproduction, numbers of offspring per
reproductive event, frequency of reproductive events). In the second experiment we will
begin following population growth in Lemna minor (Duckweed), a common aquatic plant.
Although Lemna can flower and produce seeds, it usually reproduces by vegetative propaga-
tion or budding. With adequate light, temeprature, and nutrients budding proceeds rapidly.
Lemna and other aquatic vascular plants (e.g., Wolffia, Azolla, and giant duckweed, Spirodela
polyrhiza) can occur in great numbers in lakes or ponds. Indeed, it is often considered a nui-
sance because it carpets ponds, but it is actually an important food for fish and birds and
shelter for small aquatic species. It can also grow in impressively nutrient rich waters (read:
wastewater). Duckweed (usually S. polyrhiza) is being developed as means of treating effluent
as well as a bioenergy fuel stock.

In this context, it is important to determine how to sustainably harvest the greatest abun-
dance or biomass from a growing population. This is a common issue in wildlife management,
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fisheries, forestry, and increasingly in situations where microbes are used in industrial appli-
cations. It seems reasonable to assume that harvesting too heavily will cause the population
to decline, potentially to extinction, but to little harvesting leaves valuable biomass unused
and the population growing too slowly. Where exactly is the right level?

In this experiment you will experiment with two levels of harvesting to determine which
maximizes the overall yield of Lemna. We will replicate the experiment with two levels of
nutrients so you can see how the results change with resource levels. Your TAs will grow
and count control populations for you; your job is to grow and harvest your own populations
and then compare them to each other and to the controls. You will need to decide as a lab
section what your two levels of harvesting will be.

Materials

Lemna minor colonies large culture tubes Saran wrap

Hoagland’s culture medium test tube rack forceps

Procedure

1. The Teaching Assistant will explain the basic morphology of Lemna, particularly the
basic unit of its organization, the frond. Buds will emerge from these fronds, and clus-
ters of individuals often form.

2. Add 2 mL of Hoagland’s solution to each of two tubes and 15 mL to two other tubes.
Then add distilled water to each tube to a total volume of 30 mL. These will be your
two nutrient levels. At each level of nutrients you will apply one level of harvesting to
each tube, for a total of four treatments (low nutrient-low harvesting, low nutrient-high
harvesting, high nutrient-low harvesting, and high nutrient-high harvesting).

3. Using forceps, place several separated fronds in a culture tube with the culture medium
for Lemna. The lab section will set up several cultures. Label the tube with the date,
the treatment, and the initial number of fronds.

4. Cover the tube with Saran Wrap. Punch several small holes in the Saran Wrap with
the forceps. Then place the culture tube in the tube rack under the bank of fluorescent
lights in the lab.

5. Count and record the number of fronds in each week over the next 4 weeks. After
recording the number of fronds, harvest the appropriate number from each tube and
record the number harvested.
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Population Growth Analyses

In our analyses we will (eventually) fit two models of population growth to your data on the
yeast populations and the control Lemna populations. Remember that unbounded popula-
tions with overlapping generations grow exponentially, but when resources are limited the
population will grow logistically. The exponential growth equation is:

Nt = N0e
rt (1)

and the logistic growth equation is:

Nt =
KN0e

rt

K + N0(ert − 1)
=

K

1 +
(

K
N0

− 1
)
e−rt

, (2)

where Nt is the population size at time t, N0 is then the initial population size, r is the
intrinsic growth rate (per capita growth rate when resources are unlimited), and K is the
carrying capacity.

Our initial goal, however, is for you to develop a bit of intuition for these models and pa-
rameters relative to your own hard-won data. So first we will make some informative plots,
and then we will fit these two models to our data. Lastly, we will return to the question of
harvesting rates in our Lemna populations.

HINT Complete the steps and analyses for one type of organism (e.g., yeast), then copy all
of your calculations and graphs into a new workbook. You can then just change the data to
that of the new population (e.g., Lemna) without having to re-enter everything.

1. For the yeast and then the control Lemna populations that the TAs provide, plot the
number of organisms (Nt) against census time (t) in hours or days. In the case
of the yeast, you will be using absorbance in place of actual numbers. Describe in your
own words what happened to the populations.
What are the similarities and differences between them?
Where on the graph is each population growing the fastest (i.e., the slope the steepest)?
Which model of population growth seems to best describe your results?

It should be pretty obvious which model of growth fits these data best, but let’s explore
what that means a bit.

2. Plot the population growth against population density. How can we estimate
the population growth rate? Again, it is the slope of your previous graphs. The slope
is simply the amount that a population grew in a time interval (e.g., from hour 1
to hour 4) divided by that time interval (here, 3 hours), or more generally, slope =
(Nt+1 −Nt)/(timet+1 − timet).
Create a column for the population growth rate over every interval. Note you will not
have a growth rate for the last time point because that was when we stopped counting.
We want to plot this against the population size, Nt, but should we use the population
size at the start or end of the interval (Nt or Nt+1)? The best strategy is to use the
average population size during the interval, (Nt + Nt+1)/2. So create a new column
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called “average N” and calculate the average population size for each time-step. Now
plot the population growth rate against the average N during each interval.

Where is the population growth rate greatest? Where is it the least?

3. Now, plot the per capita growth rate against population density. This is
simply the population growth rate, which you just calculated as the slope, divided by
the average abundance (or absorbance) during the time interval.

How does per capita growth differ from population growth in these two graphs?
Where is the per capita growth rate greatest? Where is it the smallest? Why?

It is worth noting that real-world data can be very messy and thus deviate from theo-
retical expectations by quite a lot. Don’t get too worried about, say, negative growth
rates or values that seem really large. Had we taken more measurements at more reg-
ular intervals you would probably see a clearer, smoother trajectory. In our case, you
may have to squint a little see the pattern.

4. Now let us try to fit the exponential population model to our data. (Fitting the
logistic model will be very similar, but the exponential model is simpler.) Let’s take
this in steps:

a. Create a new column next to your data called “Exponential fit.”

b. Then, somewhere below all of the cells with your data, create a cell with N0 in
it. To make it easier to refer to this cell, you can name it “N0”. Look for the
box with the “name” of the cell in it, for instance F2, click in it, and type “R0”.
Now you can refer to cell N0 in your formulas and the spreadsheet will know what
you mean. You want to put the label “N0” in the cell adjacent to it for your own
benefit.
For the yeast data we do not have an actual count of the initial density (or ab-
sorbance), but we can use a value of 0.0001, which is the absorbance that is just
below readable. For the Lemna population, we know how many individuals we
started with, so just enter that value.

c. Next, create a cell for the value of the intrinsic growth rate, r. Label it “r exp”,
as above, since this is the value of r for the exponential model. Pick a value of r
to try out. You will get to change this later.

d. Now, in the first entry of the “Exponential fit” column, you will need to type in
the model Nt = N0e

rt in terms that the spreadsheet understand. For example, it
would be =N0*EXP(r exp*A2) in a spreadsheet where the first time value is in cell
A2.

e. Copy this formula for the rest of the column, applying it to all of the time points.
Then plot the predicted values of the exponential model on the same plot as your
data. (Double-click on the graph, then go to Format/Data Ranges to get a window
that will let you add new data series.)
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How well does the line fit your actual data? Can you adjust the value of r exp to get
it closer? To part of the data?

f. Next, we will formalize our metric of how well our model predictions fit our actual
data. A common metric is called the sums of squares or sum of squared differences,
often abbreviated, SS. We simply calculate the difference between the observed
value and the predicted value (often called the “expected” value) at every time
point, square these differences, and then add them up. In mathematical terms,
this is SS = Σ(obs− exp)2.

So create a column called “(obs-exp)ˆ2” and enter the formula to have it calculate
these squared differences at every time step. Then below all of these cells use the
sum() formula to add up all of these squared differences. This is your sums of squares
value.

Now try to tweaking the value of r exp to minimize the sums of squares. (Why minimize
rather than maximize the SS?) If you’re adventurous you can also try tweaking N0 as
well as r exp to get a better fit.
What is the lowest SS you can achieve? What is the value of r exp associated with
this best fit? (Note, you may want to check with your neighbors to see how they did.)
Write these values down.

Best-fit value of r: Best-fit value of SS:

5. You will likely not be surprised that there is are more direct methods for fitting the
exponential model to your data. Create a new column called “ln(Nt)” and in it take the
natural logarithm of population size (or absorbance), lnNt, using the function, log().
Now plot these values against time and fit a linear trend line to the data. Be sure it
prints the equation. Remember that:

Nt = N0e
rt, (3)

so,

ln(Nt) = ln
(
N0e

rt
)

ln(Nt) = ln(N0) + rt. (4)

This looks like the slope of a line (y = mx + b, where we replace m with r, x with
t, and ln(N0) for b). Thus the slope of the line fit the natural log of Nt against time
should be a pretty good estimate of the value of r that best fits your data (even though
it is likely to miss the actual dynamics of your populations. . . resources were limited,
right?). Similarly, the intercept is is the natural log of the starting population size, so
N0 ≈ exp(intercept).

Try plugging these values into the equation for the exponential model. Do they min-
imize the sums of squares any better than what you had guessed? Do you think the
exponential model is a reasonable description of the population dynamics you observed?

6. Finally, let us fit the logistic model of population growth to your data. Proceed
as you did for the exponential model:
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a. creating a column for the logistic fit using the parameter values in N0 logist,
r logist, and K;

b. plotting this line on the same graph as your data;

c. calculating the sums of squares of the logistic fit to your data; and

d. adjusting parameter values to minimize the sums of squares.

Best-fit value of r: K: SS:

Does the logistic model fit your data better by the exponential model? How can you
tell?

7. Optional. The approximation of r from the regression line in step 5 does not work
for the logistic model. There is another way to estimate r and K, however. Remember
that the logistic model describing the change in population growth with population
abundance or density is:

dN

dt
= rN

(
1 − N

K

)
. (5)

The per capita growth rate is thus,

1

N

dN

dt
= r

(
1 − N

K

)
= r − r

K
N. (6)

This looks like the equation for a line again. We simply need to plot the per capita
growth rate against the population size. You will notice that we already calculated
both the per capita growth rate and the average population size, so this should be
straightforward. Here r is the intercept of the best fit-line and the slope estimates
−r/K, so K = −r/slope. (Alternatively, you can estimates K as the point where the
line crosses the x-axis, i.e., where per capita growth = 0. Why does this work?)
Try entering these estimates of r and K into your logistic predictions to see if it fits
your data better. You may have to tweak the estimate of N0 a bit to get the line to fit
well.

8. Compare harvesting strategies. You should now have a good idea of how your
Lemna population grows, and in particular where the growth rate is highest. We would
expect that a harvesting strategy that kept the population near it’s maximum popu-
lation growth rate would produce the greatest yield. So before you actually measure
the yields, write down your prediction for which strategy will have yielded the most
Lemna.

Prediction:

Now calculate the average number of Lemna that each group harvested over the entire
experiment from each treatment (i.e., harvesting strategy). Which strategy won? Does
this match your predictions? If not, why?
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If you are interested, try calculating how many Lemna you would have expected to get
under each harvesting strategy. You already have the equations in your spreadsheet that
calculate the population size through time for the logistic model. All you need to do is
calculate the number of Lemna harvested at each time point, reduce the population by
that many, and let it grow until the next time.
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Lab Assignment

You will present three figures from your Lemna minor data with descriptive captions.

Figure 1: Show the population dynamics of the control Lemna populations through time,
along with the predictions from the best-fit population model. Make sure your caption
describes both the data and the model, including the parameter values. (4 points)

Figure 2: The second figure will illustrate how population growth changed with population
density. The caption should include your predictions for the level of harvesting that would
maximize overall yield. (3 points)

Figure 3: The last figure will show the actual yields in the two harvesting treatments. It
should represent the average and standard error from the class data. The caption should
include your conclusion(s) based on these data (and can refer to figure 2 if you need). (3
points)

Points will be assigned according to this rubric:

Fig 1 Fig 2 Fig 3 Total Possible

Correct axis labels (with units) /1 /1 /1 /3 points

Clear, concise, and adequate presentation of data /2 /1 /1 /4 points

Clear, descriptive caption /1 /1 /1 /3 points
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