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conestraint | kon'strant

noun

a limitation or restriction: the availability of water is the main
constraint on food production | time constraints make it
impossible to do everything.

* stiffness of manner and inhibition in relations between people:
they would be able to talk without constraint.

ORIGIN late Middle English (in the sense “coercion’): from Old
French constreinte, feminine past participle of constraindre (sce
CONSTRAIN) .

Maintenance <€—> Reproduction

trade-off | ‘treid of

noun

a balance achieved between two desirable but incompatible
features:; a compromise: a trade-off between objectivity and
relevance.

Growth

(Survival)

FAST

ooV

Energy source

Gross energy
Energy used
to obtain energy
Energy capture

Energy surplus

! !

Maintenance Growth

1 l

Storage || Reproduction || Protection






1200 4

1000 4
=
= 5
P 800
—J
o
B 800 4
=
S
T
- &0 1
200 -
00.—; -
Single Twins Triplets Al Bvebirths
@ below 1500 gm 07 76 209 09
= 1500-2499 g 37 437 364 45
0 2500gm & over 956 487 22.7 M6

Type of Birth
Source. Ontano Mnistry of Health, HEUPS 1-Y2K, Lve Brths Database, sod Population Estmates Databade June 1939 relagse




A comparative study of seed number, seed size, seedling size and

recruitment in grassland plants
OIKOS 88: 494-502. Copenhagen 2000

Anna Jakobsson and Ove Eriksson
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A comparative study of seed number, seed size, seedling size and

recruitment in grassland plants
OIKOS 88: 494-502. Copenhagen 2000

Anna Jakobsson and Ove Eriksson
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Yammeeeeee Fig. 4. The relationship between recruitment success and log
seed weight in 50 species inhabiting semi-natural grasslands
(y=0.218 +0.062x, r*=0.21, p <0.001). Recruitment was ‘
defined as the total number of recruits/total number of seeds |
sown. The three species with very high recruitment values are |
Anthriscus sylvestris, Lotus corniculatus and Ranunculus acris.
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A comparative study of seed number, seed size, seedling size and

recruitment in grassland plants
OIKOS 88: 494-502. Copenhagen 2000

Anna Jakobsson and Ove Eriksson
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A comparative study of seed number, seed size, seedling size and

recruitment in grassland plants
OIKOS 88: 494-502. Copenhagen 2000

Anna Jakobsson and Ove Eriksson

In this study we analyse relationships between seed number, seed size, seedling size
and recruitment success in grassland plants. The often hypothesised trade-off between
seed size and seed number was supported by a cross-species analysis and by an
analysis of 35 phylogenetically independent contrasts, derived from a data-set of 72
species. Apart from among-species relatedness, we also controlled for possible
confounding effect of plant size that may influence both seed size and seed number.
A sowing experiment with 50 species was performed in the field. The seeds were sown
in a grassland and subjected to two treatments, disturbance and undisturbed sward.
Evidence for seed-limited recruitment was obtained for 45 of the species. Disturbance
had a significant, or nearly significant, positive effect on recruitment for 16 of the 45
species. The relative recruitment in undisturbed sward increased with increased seed
size, and both recruitment success and seedling size were positively related to seed
size. We suggest that a trade-off between competitive ability and number of recruit-
ment opportunities follows from the trade-off between seed size and seed number,
through a causal chain from seed size via seedling size to recruitment success. The
relationships between seed size, seed number and recruitment may be an important
underlying mechanism for abundance and dynamics of plant species in grassland
vegetation. This is an example of a direct link between evolutionary life-history
theory, and theory of plant community structure.
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Figure 1 Some modular macroorganisms and
microorganisms. (a) A clonal terrestrial plant (strawberry); (b)
a clonal, floating aquatic plant (Salvinia sp.); (c) a sea fan coral
(Gorgonia sp.); (d) a colonial bryozoan (Membranipora sp.);
(e) mycelium of a fungus; (f) microcolony of bacteria. [From
Andrews (7) with permission from the American Society for
Microbiology:.]

BACTERIA AS MODULAR ORGANISMS

Annual Review of Microbiology

Vol. 52: 105-126 (Volume publication date October 1998)
DOI: 10.1146/annurev.micro.52.1.105

John H. Andrews
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: '\Runner (stolon) /
Runner (daughter) plants

\

strawberryplants.org/2010/05/ stfawberry-plant/

http://aggie-
horticulture.tamu.edu/
archives/parsons/turf/
publications/
buffalo.html
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Figure 4.32 Top: Hypothetical survivorship curves for animal populations (see text). Bottom: Representative survivorship curves for amphibians and reptiles with

short life spans (left) and long life spans (right). Although the lower graphs are superficially similar, note the great difference in age scale.
Data from the following: Amphibians—PFj, Hairston, 1983; Rc, Briggs and Storm, 1970; Reptiles—Cc, Brown and Parker, 1984; Ts, Frazer et al., 1990; Us, Tinkle,

—
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Gutsell S.L. and Johnson E.A. 1998. What can be learned about forest
dynamics from the age distribution of trees?. Pages 217-226, in Tested

studies for laboratory teaching, Volume 19. (S. J. Karcher, Editor).
Proceedings of the 19th Workshop/Conference of the Association for

Biology Laboratory Education (ABLE), 365 pages.
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FACTORS AFFECTING POPULATION FLUCTUATIONS IN
LARVAL AND ADULT STAGES OF THE
WOOD FROG (RANA SYLVATICA)

1602 KEITH A. BERVEN Ecology, Vol. 71, No. 4
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FiG. 3. Survivorship curves for inlalcs and females (1976-1980).
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FACTORS AFFECTING POPULATION FLUCTUATIONS IN
LARVAL AND ADULT STAGES OF THE
WOOD FROG (RANA SYLVATICA)

August 1990 WOOD FROG POPULATION DYNAMICS

1000

100 A

10 -

Number Of Individuals Surviving

1 |

1st é 3 4
Number Of Years Recaptured

F1G. 4. Survivorship curves based on individuals initially
marked as adults. Each point represents the mean number of
males and females surviving from BVI and BVII ponds for
the period 1977-1982, standardized to an initial number of

1000

W-—'——«

22

1603

TasLe 2. Life table analysis including measures of net re-
placement rates (R,), and generation times (&) for wood
frogs from BVI and BVI1I pond for 1976-1980. Fecundity
data (number of eggs per female) are taken from Berven

1988,
Year Age I m, Im, R, G
1976 0  1.0000 0 0.000

1 0.0012 0  0.000

2 0000212 287  0.06]

3 0000016 390 0006 0.067 2.09
1977* 0 1.0000 0  0.0000

1 0.00024 0  0.0000

2 0000032 289  0.0092

3 0.00000035 371  0.0001 0.0093 2.0l
1978 0  1.0000 0  0.0000

1 0.0298 3.34 0.0998

2 00183 373 6.8408

3 0.0016 344 0.5504 7.49  2.06
1979 0  1.0000 0 0.0000

I 00163 158 0.2574

2 0.0035 333 1.1655

3 0.0008 301  0.2408 1.66 2.11
1980 0  1.0000 0 0.0000

1 0.02197 1.04 0.0229

2 000314 286  0.8983

3 000039 352  0.1375 1.06 2.10
1980* 0  1.0000 0  0.0000

1 0.00177 217 0.0384

2 000053 325  0.1722

3 000008 352  0.0275 0238 1.96
* BVII pond.
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What Is Missing in Amphibian Decline Research:
Insights from Ecological Sensitivity Analysis

ROMAN BIEK,* W. CHRIS FUNK,t BRYCE A. MAXELL,*} AND L. SCOTT MILLS*
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A STAGE-BASED POPULATION MODEL FOR LOGGERHEAD
SEA TURTLES AND IMPLICATIONS FOR CONSERVATION!

DEBORAH T. CROUSE
Department of Zoology, University of Wisconsin, Madison, Wisconsin, 53706 USA

LARRY B. CROWDER"
Department of Zoology, North Carolina State University, Raleigh, North Carolina 27695-7617 USA

AND

HAL CASWELL
Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543 USA

TaBLE 3. Stage-based life table for loggerhead sea turtles based on data in Frazer (1983a). These values assume a population
dechining at =3%/yr.

Stage Size* Approximate ages Annual Fecundity
number Class (cm) (yr) survivorship (no. eggs/yr)
| cggs. hatchlings <10 <1 0.6747 0
2 small juveniles 10.1-58.0 1-7 0.7857 0
3 large juveniles 58.1-80.0 8-15 0.6758 0
4 subadults 80.1-87.0 16-21 0.7425 0
5 novice breeders >87.0 22 0.8091 127
6 I st-yr remigrants >87.0 23 0.8091 4
7 mature breeders >87.0 24-54 0.8091 80

* Straight carapace length.

TaBLE 4. Stage-class population matrix for loggerhead sea turtles based on the life table presented in Table 3. For the general
form of the matrix and formulae for calculating the matrix elements see Theoretical Population Projections.

0 0 0 0 127 4 80
0.6747 0.7370 0 0 0 0 0
0 0.0486 0.6610 0 0 0 0
0 0 0.0147 0.6907 0 0 0
0 0 0 0.0518 0 0 0
0 0 0 0 0.8091 0 0
0 0 0 0 0 0.8091 0.8089




Ecology, 68(5), 1987, pp. 1412-1423

A STAGE-BASED POPULATION MODEL FOR LOGGERHEAD
SEA TURTLES AND IMPLICATIONS FOR CONSERVATION!

DeBORAH T. CROUSE
Department of Zoology, University of Wisconsin, Madison, Wisconsin, 53706 USA

LARRY B. CROWDER*
Department of Zoology, North Carolina State University, Raleigh, North Carolina 27695-7617 USA

AND

HAL CASWELL
Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543 USA

FiG. 1. Changes in rate of increase r resulting from sim-
ulated changes in fecundity and survival of individual life
history stages in the loggerhead population matrix (remaining
components held constant). The dashed line represents the r
determined in the baseline run on the initial matrix. (a.) Sim-
ulations represent 50% decreases in fecundity or survivorship.
(b.) Simulations represent a 50% increase in fecundity or an
increase in survivorship to 1.0. Stages 2-4 (juveniles and
subadults) show the strongest response to these simulated
changes. (Specific calculations are presented in Crouse 1985.)
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Ecology, 68(5), 1987, pp. 1412-1423
A STAGE-BASED POPULATION MODEL FOR LOGGERHEAD
SEA TURTLES AND IMPLICATIONS FOR CONSERVATION!'

DeBORAH T. CROUSE
Department of Zoology, University of Wisconsin, Madison, Wisconsin, 53706 USA

LARRY B. CROWDER*
Department of Zoology, North Carolina State University, Raleigh, North Carolina 27695-7617 USA

AND

HAL CASWELL
Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543 USA

The Trawl Efficiency Device (or Turtle Excluder De-
vice, TED) mentioned earlier can be installed in ex-
isting trawls and virtually eliminates the capture and
drowning of marine turtles (Siedel and McVea 1982
and C. Oravetz, personal communication). The TED
has the added advantage of eliminating other large ob-
jects (bycatch) from the trawl, thereby improving the
hydrodynamics of the trawl and improving fuel effi-
ciency (Anonymous 1983). Easley (1982) found that a
small but significant increase in the shrimp caught in
paired tests resulted in an economic advantage to larger
vessels installing the device. Smaller and lighter ver-
sions of the TED are currently being tested for perfor-
mance and durability (C. Oravetz 1985 and personal
communication). Increased use of TEDs in the trawl
fishery might provide advantages to both the fishery
and threatened loggerhead populations.
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Figure 5. Change in the number of nesting females at nesting beaches for the South Atlantic
Ocean DPS. The number of nesting females was computed from the observed number of nests
divided by the mean clutch frequency (5 yr''; Table 1).
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Stable environment,

Unstable environment, density dependent
density independent interactions
size Small oo — Large
Investment / offspring Low High
# offspring Many Few
Mature Early Late
Life span Short Long
Freq. reproduction Semelparous Iteroparous
Survival across ages Type III Type I or II
Competition Often lax Often intense
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Competitive species e T
S such as birch ¥, o

.. N
Competitive (e.g., Oak) predominate under
conditions of low
disturbance and low

stress.

\ J
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Stres:s-tolerant Ruderals are
Spegies: dominant under
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undc!' ‘ ‘ = disturbance and low
COI]lelOI]S of % stress.
low disturbance Ttermediate "%6& /

life history
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Importance of Stress

Stress Tolerant (e.g., Saguaro) °
Intermediate:
60% Disturbance, 20% Stress,
20% Competition
(e.g., Perennial Herbs)

&®RGrime's life history strategy classification. Plants allocate
resources depending on the importance of disturbance, stress and
competition. Relative importances sum to 100%.
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RThe classification system of Winemiller and Rose, which groups species according to three life history parameters.
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Fishes
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Compared to other vertebrate
groups, fishes include a much
greater range of life history
strategies.
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