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Figure 1: Net primary production (NPP) and
standing biomass allocation for a 90-year-old
Michigan forest estimated from inventory-
based methods in which biomass growth is
quantified over time (Gough et al. 2008)
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GPP/Re = 1

Ecosystem Respiration (Re)

GPP/Re < 1
Heterotrophic

GPP/Re > 1
Autotrophic

Gross Primary Production (GPP)

Ecosystems can be classified based on the ratio of ecosystem
respiration (Re) to gross primary production (GPP). Adapted from

Fisher and Likens (1973).
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Figure 3: Patterns of terrestrial NPP at different timescales in a
temperate forest: Daily net primary production (NPP) changes
during the growing season in response to climate variables
including solar radiation and precipitation, while the duration of
NPP during the growing season (i.e., spring green-up to autumn
leaf fall) is largely a function of photoperiod. Annual NPP
changes from one year to the next in response to longer-term
trends in climate, including shifts in total solar radiation caused
by differences in cloud cover from year to year. Decadal patterns
of NPP track changes in ecological succession (Gough et al.

2007, 2008).



Biome Global GPP1 Global NPP Ecosystem NPP
PgC/yr PgC/yr g C/ (ha-yr)
Tropical forest 40.8 16.0-23.1 871-1098
Temperate forest 9.9 4.6-9.1 465-741
Boreal forest 8.3 2.6-4.6 173-238
Tropical savannah and 31.3 14.9-19.2 343-393
grasslands
Temperate grasslands 3.5 3.4-7.0 129-342
and shrublands
Deserts 6.4 0.5-3.5 28-151
Tundra 1.6 0.5-1.0 80-130
Croplands 14.8 4.1-8.0 288-468
TOTAL 121.7 48.0-69.0 2377-3561

Table 1: Global and ecosystem-scale estimates of mean terrestrial gross and
net primary production for the Earth's major biomes from remotely sensed
satellite data and modeling students. 1 Petagram (Pg) = 101> grams (g).
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Figure 2.14. Effect of forage quality on intake responses to supplemental feeding. This is the result
of an experiment in which sheep were offered forages of different quality ad Hbitum
either with or without suppiemental feed (Huston et 2l 1988). The low-, modium.
and high-quality forages were wheat straw (3.4% CP and 41% [VOMD), sorghum
hay (5.9% CP and 54% IVDMD), and oat hay (13.8% CP and 655 [VDMD), respec-
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PRODUCTION AND RESPIRATION IN ANIMAL
i POPULATIONS
By W. F. HUMPHREYS
or ] 1 1 :
0 4 6 Mean production effciency and standard error of major consumer
Respiration (log, cal mZy™) groups: insectivores (l), birds (B), small mammals (SM), other

-g mammals (OM), fish and social insects (FSI), non-insect

FiG. 1. The relationship betw iration and producti oth as
I © mship between respiration and production (bot logy, cal m invertebrates (NII), and non-social insects (NSI). Adapted from

in natural populations of animals. The regression lines, not adjusted for common sl¢ _
the seven derived groups (Table 2) are shown. The points for Perognathus penicillatis and
P. baileyi (Appendix) are not plotted. The lines are numbered 1 = insectivores, 2 = small
mammal communities, 3 = birds,4 = other mammals, 5 = fish and social insects, 6 =
non-insect invertebrates and 7 = non-social insects. The symbols denote: [J insectivores,
(@ small mammal communities, [Jj other mammals, % birds, + fish, x social insects, O
molluscs, @ Crustacea, ¥ other non-insect invertebrates, A Orthoptera, A Hemiptera,
V other non-social insects.



Log-log relationship of field metabolic rate to body mass in 229 species of terrestrial
vertebrates.
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The food web of Tuesday Lake in 1984.
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The illustration is not drawn to scale and is redrawn from figure 3-12 in (2005) Fundamentals of ecology, Brooks Cole, pp. 598 ISBN:
9780534420666. , which is based on published experimental data. Notation: P=Producer, C1=primary consumer, C2=secondary consumer,

C3=tertiary consumer, S=saprotroph
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(1973).



Ecosystem connectivity and impacts on ecosystem services from human activities
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