
Datalog and Recursive Queries

Universidad de Concepción, 2014

(Slides adapted from Loreto Bravo who adapted from Werner Nutt who adapted them

from Thomas Eiter and Leonid Libkin)

Bases de Datos II 1

Motivation

• Relational Calculus and Relational Algebra were considered to be “the” database

languages for a long time

• Codd: A query language is “complete,” if it yields Relational Calculus

• However, Relational Calculus misses an important feature: recursion

• Example: A metro database with relation links:line, station, nextstation

What stations are reachable from station “Odeon”?

Can we go from Odeon to Tuileries?

etc.

• It can be proved: such queries cannot be expressed in Relational Calculus

• This motivated a logic-programming extension to conjunctive queries: datalog

Datalog

Bases de Datos II 2

Example: Metro Database Instance

links line station nextstation

4 St.Germain Odeon
4 Odeon St.Michel
4 St. Michel Chatelet
1 Chatelet Louvres
1 Louvres Palais Royal
1 Palais-Royal Tuileries
1 Tuileries Concorde

Datalog program for first query:

reach(X, X) ← links(L, X, Y)

reach(X, X) ← links(L, Y, X)

reach(X, Y) ← links(L, X, Z), reach(Z, Y)

answer(X) ← reach(‘Odeon‘, X)

Note: recursive definition

Intuitively, if the part right of “←” is true, the rule “fires” and the atom left of “←” is concluded.

Datalog

Bases de Datos II 3

Example: Ancestor-Descendant

ParentChild parent child

Homer Bart
Homer Lisa
Marge Bart
Marge Lisa
Abe Homer
Ape Abe

Query: Who are Bart’s ancestors?

Datalog program:

AncestorDescendant(X, Y) ← ParentChild(X, Y)

AncestorDescendant(X, Y) ← ParentChild(X, Z), AncestorDescendant(Z, Y)

answer(X) ← AncestorDescendant(X,′ Bart′)

Datalog

Bases de Datos II 4

Datalog Syntax

Definition. A datalog rule r is an expression of the form

R0(~x0)← R1(~x1), . . . , Rn(~xn) (1)

• where n ≥ 0,

R0, . . . , Rn are relations names, and

~x0, . . . , ~xn are vectors of variables and constants (from dom)

• every variable in ~x0 occurs in ~x1, . . . , ~xn (“safety”)

Remarks.

• The head of r, denoted H(r), is R0(~x0)

• The body of r, denoted B(r), is { R1(~x1), . . . , Rn(~xn) }

• The rule symbol “←” is often also written as “:-”

Definition. A datalog program is a finite set of datalog rules.

Datalog

Bases de Datos II 5

Datalog Programs

Let P be a datalog program.

• An extensional relation of P is a relation occurring only in rule bodies of P

• An intensional relation of P is a relation occurring in the head of some rule in P

• The extensional schema of P , edb(P), consists of all extensional relations of P

• The intensional schema of P , idb(P), consists of all intensional relations of P

• The schema of P , sch(P), is the union of edb(P) and idb(P).

Datalog

Bases de Datos II 6

The Metro Example /1

Datalog program P on metro database scheme

M = {links : line, station, nextstation}:

reach(X, X) ← links(L, X, Y)

reach(X, X) ← links(L, Y, X)

reach(X, Y) ← links(L, X, Z), reach(Z, Y)

answer(X) ← reach(′Odeon′, X)

Here,

edb(P) = {links} (=M),

idb(P) = {reach, answer},
sch(P) = {links, reach, answer}

Datalog

Bases de Datos II 7

Datalog Syntax (cntd)

• The set of constants occurring in a datalog program P is denoted as adom(P)

• Given a database instance I, we define the active domain of P with respect to I

as

adom(P, I) := adom(P) ∪ adom(I),

that is, as the set of constants occurring in P and I

Definition. Let ν : var(r) ∪ dom→ dom be a valuation for a rule r of form (1).

Then the instantiation of r with ν, denoted ν(r), is the rule

R0(ν(~x0))← R1(ν(~x1)), . . . , Rn(ν(~xn))

which results from replacing each variable x with ν(x).

Datalog

Bases de Datos II 8

The Metro Example /2

• For the datalog program P above, we have that adom(P) = { Odeon }

• We consider the database instance I:

links line station nextstation

4 St.Germain Odeon
4 Odeon St.Michel
4 St. Michel Chatelet
1 Chatelet Louvres
1 Louvres Palais-Royal
1 Palais-Royal Tuileries
1 Tuileries Concorde

Then adom(I) = {4, 1, St.Germain, Odeon, St.Michel, Chatelet, Louvres,

Palais-Royal, Tuileries, Concorde}

• Also adom(P, I) = adom(I).

Datalog

Bases de Datos II 9

The Metro Example /3

• The rule

reach(St.Germain, Odeon) ← links(Louvres, St.Germain, Concorde),

reach(Concorde, Odeon)

is an instance of the rule

reach(X, Y) ← links(L, X, Z), reach(Z, Y)

of P :

take ν(X) = St.Germain, ν(L) = Louvres, ν(Y) = Odeon, ν(Z) = Concorde

Datalog

Bases de Datos II 10

Datalog Semantics

• There exist several approaches to defining the semantics:

Operational (fixpoint) approach:

Obtain query result by applying an inference procedure,

until a fixpoint is reached

Model-theoretic approach:

View rules as logical sentences, which state the query result

Proof-theoretic approach:

Obtain proofs of facts in the query result, following a proof calculus

(based on resolution)

Datalog

Bases de Datos II 11

Fixpoint Semantics

Basic idea:

“If all facts in I hold, which other facts must hold after firing the rules in P ?”

Approach:

• Define an immediate consequence operator TP (K) on db instances K.

• Start with K = I.

• Apply TP to obtain a new instance: Knew := TP (K) = I ∪ new facts.

• Iterate until nothing new can be produced.

• The result yields the semantics.

Datalog

Bases de Datos II 12

Immediate Consequence Operator

Let P be a datalog program and K be a database instance of sch(P).

A fact R(~t) is an immediate consequence for K and P , if either

• R ∈ edb(P) and R(~t) ∈ K, or

• there exists a ground instance r of a rule in P such that

H(r) = R(~t) and B(r) ⊆ K.

Definition. The immediate consequence operator of a datalog program P is the

mapping

TP : inst(sch(P))→ inst(sch(P))

where

TP (K) = { A | A is an immediate consequence for K and P }.

Datalog

Bases de Datos II 13

Example

Consider

P = { reachable(a)

reachable(Y)← arc(X, Y), reachable(X) }

where edb(P) = {arc} and idb(P) = {reachable}.

I = K1 = {arc(a, b), arc(b, c)}
K2 = {arc(a, b), arc(b, c), reachable(a)}
K3 = {arc(a, b), arc(b, c), reachable(a), reachable(b) }
K4 = {arc(a, b), arc(b, c), reachable(a), reachable(b), reachable(c)}

Datalog

Bases de Datos II 14

Example (cntd)

Then,

TP (K1) = {arc(a, b), arc(b, c), reachable(a)} = K2

TP (K2) = {arc(a, b), arc(b, c), reachable(a), reachable(b)} = K3

TP (K3) = {arc(a, b), arc(b, c), reachable(a), reachable(b), reachable(c) } = K4

TP (K4) = {arc(a, b), arc(b, c), reachable(a), reachable(b), reachable(c)} = K4

Thus, K4 is a fixpoint of TP .

Definition. K is a fixpoint of operator TP if TP (K) = K.

Datalog

Bases de Datos II 15

Properties

Proposition. For every datalog program P we have:

1. The operator TP is monotonic, that is, K ⊆ K′ implies TP (K) ⊆ TP (K′);

2. For any K ∈ inst(sch(P)) we have:

K is a model of ΣP if and only if TP (K) ⊆ K;

3. If TP (K) = K (i.e., K is a fixpoint), then K is a model of ΣP .

Note: The converse of 3. does not hold in general.

Datalog

Bases de Datos II 16

Fixpoint Iteration

For a datalog program P and database instance I, define the sequence (Ii)i≥0 by

I0 = I

Ii = TP (Ii−1) for i > 0.

• By monotoncity of TP , we have I0 ⊆ I1 ⊆ I2 ⊆ · · · ⊆ Ii ⊆ Ii+1 ⊆ · · ·

• For every i ≥ 0, we have Ii ⊆ B(P, I), with B(P, I) the instance of

sch(P)

• Hence, for some integer n ≤ |B(P, I)|, we have In+1 = In (=: Tω
P (I))

• It holds that Tω
P (I) = lfp(P, I) = P (I).

This can be readily implemented by an algorithm.

Datalog

Bases de Datos II 17

Example

P = { reachable(a)

reachable(Y)← arc(X, Y), reachable(X) }

I = {arc(a, b), arc(b, c)}

Then,

I0 = {arc(a, b), arc(b, c)}

I1 = T1
P (I) = {arc(a, b), arc(b, c), reachable(a)}

I2 = T2
P (I) = {arc(a, b), arc(b, c), reachable(a), reachable(b)}

I3 = T3
P (I) = {arc(a, b), arc(b, c), reachable(a), reachable(b), reachable(c)}

I4 = T4
P (I) = {arc(a, b), arc(b, c), reachable(a), reachable(b), reachable(c)}

= T3
P (I)

Thus, Tω
P (I) = lfp(P, I) = I4.

Datalog

Bases de Datos II 18

Datalog: Model-Theoretic Semantics

General Idea:

• We view a program as a set of first-order sentences

• Given an instance I of edb(P), the result of P is a database instance of

sch(P) that extends I and satisfies the sentences (or, is a model of the

sentences)

• There can be many models

• The intended answer is specified by particular models

• These particular models are selected by “external” conditions

Datalog

Bases de Datos II 19

Logical Theory ΣP

• To every datalog rule r of the form R0(~x0)← R1(~x1), . . . , Rn(~xn), with

variables x1, . . . , xm, we associate the logical sentence σ(r):

∀x1, · · · ∀xm (R1(~x1) ∧ · · · ∧Rn(~xn)→ R0(~x0))

• To a program P , we associate the set of sentences ΣP = {σ(r) | r ∈ P}.

Definition. Let P be a datalog program and I an instance of edb(P). Then,

• A model of P is an instance of sch(P) that satisfies ΣP

• The semantics of P on input I, denoted P (I), is the least model of P

containing I, if it exists.

Datalog

Bases de Datos II 20

Example

For program P and instance I of the Metro Example, the least model is:

links line station nextstation
4 St.Germain Odeon
4 Odeon St.Michel
4 St. Michel Chatelet
1 Chatelet Louvres
1 Louvres Palais-Royal
1 Palais-Royal Tuileries
1 Tuileries Concorde

reach
St.Germain St.Germain
Odeon Odeon

· · ·
Concorde Concorde
St.Germain Odeon
St.Germain St.Michel
St.Germain Chatelet
St.Germain Louvres

· · ·
answer

Odeon
St.Michel
Chatelet
Louvres
Palais-Royal
Tuileries
Concorde

Datalog

Bases de Datos II 21

Questions

• Is the semantics P (I) well-defined for every input instance I?

• How can one compute P (I)?

Observation: For any I, there is a model of P containing I

• Let B(P, I) be the instance of sch(P) such that

B(P, I)(R) =

 I(R) for each R ∈ edb(P)

adom(P, I)arity(R) for each R ∈ idb(P)

• Then: B(P, I) is a model of P containing I

⇒ P (I) is a subset of B(P, I) (if it exists)

• Naive algorithm: explore all subsets of B(P, I)

Datalog

Bases de Datos II 22

Elementary Properties of P (I)

Let P be a datalog program, I an instance of edb(P), andM(I) the set of all

models of P containing I.

Theorem. The intersection
⋂

M∈M(I)M is a model of P .

Corollary.

1. P (I) =
⋂

M∈M(I)M

2. adom(P (I)) ⊆ adom(P, I), that is, no new values appear

3. P (I)(R) = I(R), for each R ∈ edb(P).

Consequences:

• P (I) is well-defined for every I

• If P and I are finite, the P (I) is finite

Datalog

Bases de Datos II 23

Why Choose the Least Model?

There are two reasons to choose the least model containing I:

1. The Closed World Assumption:

• If a fact R(~c) is not true in all models of a database I, then infer that R(~c) is

false

• This amounts to considering I as complete

• . . . which is customary in database practice

2. The relationship to Logic Programming:

• Datalog should desirably match Logic Programming (seamless integration)

• Logic Programming builds on the minimal model semantics

Datalog

Bases de Datos II 24

Relating Datalog to Logic Programming

• A logic program makes no distinction between edb and idb

• A datalog program P and an instance I of edb(P) can be mapped to the logic

program

P(P, I) = P ∪ I

(where I is viewed as a set of atoms in the Logic Programming perspective)

• Correspondingly, we define the logical theory

ΣP,I = ΣP ∪ I

• The semantics of the logic program P = P(P, I) is defined in terms of

Herbrand interpretations of the language induced by P :

– The domain of discourse is formed by the constants occurring in P
– Each constant occurring in P is interpreted by itself

Datalog

Bases de Datos II 25

Herbrand Interpretations of Logic Programs

Given a rule r, we denote by Const(r) the set of all constants in r

Definition. For a (function-free) logic program P , we define

• the Herbrand universe of P , by

HU(P) =
⋃
r∈P

Const(r)

• the Herbrand base of P , by

HB(P) = {R(c1, . . . , cn) | R is a relation in P,

c1, . . . , cn ∈ HU(P), and arity(R) = n}

Datalog

Bases de Datos II 26

Example

P = { arc(a, b).

arc(b, c).

reachable(a).

reachable(Y)← arc(X, Y), reachable(X). }

HU(P) = {a, b, c}
HB(P) = {arc(a, a), arc(a, b), arc(a, c),

arc(b, a), arc(b, b), arc(b, c),

arc(c, a), arc(c, b), arc(c, c),

reachable(a), reachable(b), reachable(c)}

Datalog

Bases de Datos II 27

Grounding

• A rule r′ is a ground instance of a rule r with respect to HU(P), if r′ = ν(r)

for a valuation ν such that ν(x) ∈ HU(P) for each x ∈ var(r).

• The grounding of a rule r with respect to HU(P), denoted GroundP(r), is the

set of all ground instances of r wrt HU(P)

• The grounding of a logic program P is

Ground(P) =
⋃
r∈P

GroundP(r)

Datalog

Bases de Datos II 28

Example

Ground(P) = {arc(a, b). arc(b, c). reachable(a).

reachable(a)← arc(a, a), reachable(a).

reachable(b)← arc(a, b), reachable(a).

reachable(c)← arc(a, c), reachable(a).

reachable(a)← arc(b, a), reachable(b).

reachable(b)← arc(b, b), reachable(b).

reachable(c)← arc(b, c), reachable(b).

reachable(a)← arc(c, a), reachable(c).

reachable(b)← arc(c, b), reachable(c).

reachable(c)← arc(c, c), reachable(c). }

Datalog

Bases de Datos II 29

Herbrand Models

• A Herbrand-interpretation I of P is any subset I ⊆ HB(P)

• A Herbrand-model of P is a Herbrand-interpretation that satisfies all sentences

in ΣP,I

Equivalently, M ⊆ HB(P) is a Herbrand model if

• for all r ∈ Ground(P) such that B(r) ⊆M we have that H(r) ⊆M

Datalog

Bases de Datos II 30

Example

The Herbrand models of program P above are exactly the following:

• M1 = { arc(a, b), arc(b, c),

reachable(a), reachable(b), reachable(c) }

• M2 = HB(P)

• every interpretation M such that M1 ⊆M ⊆M2

and no others.

Datalog

Bases de Datos II 31

Logic Programming Semantics

• Proposition. HB(P) is always a model of P

• Theorem. For every logic program there exists a least Herbrand model (wrt “⊆”).

For a program P , this model is denoted MM(P) (for “minimal model”).

The model MM(P) is the semantics of P .

• Theorem (Datalog↔ Logic Programming). Let P be a datalog program and

I be an instance of edb(P). Then,

P (I) = MM(P(P, I))

Datalog

Bases de Datos II 32

Consequences

Results and techniques for Logic Programming can be exploited for datalog.

For example,

• proof procedures for Logic Programming (e.g., SLD resolution) can be applied to

datalog (with some caveats, regarding for instance termination)

• datalog can be reduced by “grounding” to propositional logic programs

Datalog

Bases de Datos II 33

Datalog Semantics via Least Fixpoint

The semantics of P on database instance I of edb(P) is a special fixpoint:

Theorem. Let P be a datalog program and I be a database instance. Then

1. TP has a least (wrt “⊆”) fixpoint containing I, denoted lfp(P, I).

2. Moreover, lfp(P, I) = MM(P(P, I)) = P (I).

Advantage: Constructive definition of P (I) by fixpoint iteration

Datalog

Bases de Datos II 34

Proof-Theoretic Approach

Basic idea: The answer of a datalog program P on I is given by the set of facts

which can be proved from P and I.

Definition. A proof tree for a fact A from I and P is a labeled finite tree T such that

• each vertex of T is labeled by a fact

• the root of T is labeled by A

• each leaf of T is labeled by a fact in I

• if a non-leaf of T is labeled with A1 and its children are labeled with

A2, . . . , An, then there exists a ground instance r of a rule in P such that

H(r) = A1 and B(r) = {A2, . . . , An}

Datalog

Bases de Datos II 35

Example (Same Generation)

P = { r1 : sgc(X, X) ← person(X)

r2 : sgc(X, Y) ← par(X, X1), sgc(X1, Y1), par(Y, Y1) }

where edb(P) = {person, par} and idb(P) = {sgc}

Consider I as follows:

I(person) = { 〈ann〉, 〈bertrand〉, 〈charles〉, 〈dorothy〉,

〈evelyn〉, 〈fred〉, 〈george〉, 〈hilary〉}

I(par) = { 〈dorothy, george〉, 〈evelyn, george〉, 〈bertrand, dorothy〉,

〈ann, dorothy〉, 〈hilary, ann〉, 〈charles, evelyn〉}.

Datalog

Bases de Datos II 36

Example (Same Generation)/2

Proof tree for A = sgc(ann, charles) from I and P :

r2 : par(ann, dorothy) par(charles, evelyn)

sgc(ann, charles)

r2 : par(dorothy, george)

r1 : person(george)

sgc(george, george)
par(evelyn, george)

sgc(dorothy, evelyn)

Datalog

Bases de Datos II 37

Proof Tree Construction

Different ways to construct a proof tree for A from P and I exist

• Bottom Up construction: From leaves to root

Intimately related to fixpoint approach

– Define S `P B to prove fact B from facts S if B ∈ S or by a rule in P

– Give S = I for granted

• Top Down construction: From root to leaves

In Logic Programming view, consider program P(P, I).

– This amounts to a set of logical sentences HP(P,I) of the form

∀x1 · · · ∀xm(R1(~x1) ∨ ¬R2(~x2) ∨ ¬R3(~x3) ∨ · · · ∨ ¬Rn(~xn))

– Prove A = R(~t) via resolution refutation, that is, that HP(P,I) ∪ {¬A} is

unsatisfiable.

Datalog

Bases de Datos II 38

Datalog and SLD Resolution

• Logic Programming uses SLD resolution

• SLD: Selection Rule Driven Linear Resolution for Definite Clauses

• For datalog programs P on I, resp. P(P, I), things are simpler than for general

logic programs (no function symbols, unification is easy)

• Also non-ground atoms can be handled (e.g., sgc(ann, X))

Let SLD(P) be the set of ground atoms provable with SLD Resolution from P .

Theorem. For any datalog program P and database instance I,

SLD(P(P, I)) = P (I) = T∞P(P,I) = lfp(TP(P,I)) = MM(P(P, I))

Datalog

Bases de Datos II 39

SLD Resolution – Termination

• Notice: Selection rule for next rule / atom to be considered for resolution might

affect termination

• Prolog’s strategy (leftmost atom / first rule) is problematic

Example:

child of(karl, franz).

child of(franz, frieda).

child of(frieda, pia).

descendent of(X, Y)← child of(X, Y).

descendent of(X, Y)← child of(X, Z), descendent of(Z, Y).

← descendent of(karl, X).

Datalog

Bases de Datos II 40

SLD Resolution – Termination /2

child of(karl, franz).

child of(franz, frieda).

child of(frieda, pia).

descendent of(X, Y)← child of(X, Y).

descendent of(X, Y)← descendent of(X, Z), child of(Z, Y).

← descendent of(karl, X).

Datalog

Bases de Datos II 41

SLD Resolution – Termination /3

child of(karl, franz).

child of(franz, frieda).

child of(frieda, pia).

descendent of(X, Y)← child of(X, Y).

descendent of(X, Y)← descendent of(X, Z),

descendent of(Z, Y).

← descendent of(karl, X).

Datalog

Bases de Datos II 42

SQL3

• SQL2 does not support recursive queries:

– Need to write PL/SQL or embedded SQL

• SQL3 supports recursive queries:

– WITH statement to define recursive relation

– The recursive relation is then used in a traditional SELECT FROM WHERE

query

Datalog

Bases de Datos II 43

Example: Bart’s ancestors in SQL3

Datalog Query:

AncestorDescendant(X, Y) ← ParentChild(X, Y)

AncestorDescendant(X, Y) ← ParentChild(X, Z), AncestorDescendant(Z, Y)

answer(X) ← AncestorDescendant(X,′ Bart′)

SQL3 Query:

WITH

RECURSIVE AncestorDescendent(ancestor, descendent) AS

(SELECT * FROM ParentChild)

UNION

(SELECT pc.parent, ad.descendent

FROM ParentChild pc, AncestorDescendent ad

WHERE pc.child = ad.ancestor)

SELECT ancestor

FROM AncestorDescendent

WHERE descendent = ’Bart’;

Datalog

