
Chapter 2

Nonparametric and

Graphical Models

STATISTICAL methods play a central role in the design and analysis of machine vi-
sion systems. In this background chapter, we review several learning and inference

techniques upon which our later contributions are based. We begin in Sec. 2.1 by de-
scribing exponential families of probability densities, emphasizing the roles of sufficiency
and conjugacy in Bayesian learning. Sec. 2.2 then shows how graphs may be used to im-
pose structure on exponential families. We contrast several types of graphical models,
and provide results clarifying their underlying statistical assumptions.

To apply graphical models in practical applications, computationally efficient learn-
ing and inference algorithms are needed. Sec. 2.3 describes several variational meth-
ods which approximate intractable inference tasks via message–passing algorithms. In
Sec. 2.4, we discuss a complementary class of Monte Carlo methods which use stochas-
tic simulations to analyze complex models. In this thesis, we propose new inference
algorithms which integrate variational and Monte Carlo methods in novel ways.

Finally, we conclude in Sec. 2.5 with an introduction to nonparametric methods
for Bayesian learning. These infinite–dimensional models achieve greater robustness
by avoiding restrictive assumptions about the data generation process. Despite this
flexibility, variational and Monte Carlo methods can be adapted to allow tractable
analysis of large, high–dimensional datasets.

¥ 2.1 Exponential Families

An exponential family of probability distributions [15, 36, 311] is characterized by the
values of certain sufficient statistics. Let x be a random variable taking values in some
sample space X , which may be either continuous or discrete. Given a set of statistics or
potentials {φa | a ∈ A}, the corresponding exponential family of densities is given by

p(x | θ) = ν(x) exp

{
∑

a∈A

θaφa(x) − Φ(θ)

}
(2.1)
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where θ ∈ R
|A| are the family’s natural or canonical parameters, and ν(x) is a non-

negative reference measure. In some applications, the parameters θ are set to fixed
constants, while in other cases they are interpreted as latent random variables. The log
partition function Φ(θ) is defined to normalize p(x | θ) so that it integrates to one:

Φ(θ) = log

∫

X
ν(x) exp

{
∑

a∈A

θaφa(x)

}
dx (2.2)

For discrete spaces, dx is taken to be counting measure, so that integrals become sum-
mations. This construction is valid when the canonical parameters θ belong to the set
Θ for which the log partition function is finite:

Θ ,

{
θ ∈ R

|A| | Φ(θ) < ∞
}

(2.3)

Because Φ(θ) is a convex function (see Prop. 2.1.1), Θ is necessarily convex. If Θ is also
open, the exponential family is said to be regular. Many classic probability distributions
form regular exponential families, including the Bernoulli, Poisson, Gaussian, beta, and
gamma densities [21, 107]. For example, for scalar Gaussian densities the sufficient
statistics are {x, x2}, ν(x) = 1, and Θ constrains the variance to be positive.

Exponential families are typically parameterized so that no linear combination of
the potentials {φa | a ∈ A} is almost everywhere constant. In such a minimal repre-
sentation,1 there is a unique set of canonical parameters θ associated with each density
in the family, whose dimension equals d , |A|. Furthermore, the exponential family
defines a d–dimensional Riemannian manifold, and the canonical parameters a coor-
dinate system for that manifold. By characterizing the convex geometric structure of
such manifolds, information geometry [6, 15, 52, 74, 305] provides a powerful framework
for analyzing learning and inference algorithms. In particular, as we discuss in Sec. 2.3,
results from conjugate duality [15, 311] underlie many algorithms used in this thesis.

In the following sections, we further explore the properties of exponential families,
emphasizing results which guide the specification of sufficient statistics appropriate to
particular learning problems. We then introduce a family of conjugate priors for the
canonical parameters θ, and provide detailed computational methods for two exponen-
tial families (the normal–inverse–Wishart and Dirichlet–multinomial) used extensively
in this thesis. For further discussion of the convex geometry underlying exponential
families, see [6, 15, 36, 74, 311].

¥ 2.1.1 Sufficient Statistics and Information Theory

In this section, we establish several results which motivate the use of exponential fam-
ilies, and clarify the notion of sufficiency. The following properties of the log partition
function establish its central role in the study of exponential families:

1We note, however, that overcomplete representations play an important role in recent theoretical
analyses of variational approaches to approximate inference [305, 306, 311].
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Proposition 2.1.1. The log partition function Φ(θ) of eq. (2.2) is convex (strictly so
for minimal representations) and continuously differentiable over its domain Θ. Its
derivatives are the cumulants of the sufficient statistics {φa | a ∈ A}, so that

∂Φ(θ)

∂θa
= Eθ[φa(x)] ,

∫

X
φa(x) p(x | θ) dx (2.4)

∂2Φ(θ)

∂θa∂θb
= Eθ[φa(x)φb(x)] − Eθ[φa(x)] Eθ[φb(x)] (2.5)

Proof. For a detailed proof of this classic result, see [15, 36, 311]. The cumulant gener-
ating properties follow from the chain rule and algebraic manipulation. From eq. (2.5),
∇2Φ(θ) is a positive semi–definite covariance matrix, implying convexity of Φ(θ). For
minimal families, ∇2Φ(θ) must be positive definite, guaranteeing strict convexity.

Due to this result, the log partition function is also known as the cumulant generating
function of the exponential family. The convexity of Φ(θ) has important implications
for the geometry of exponential families [6, 15, 36, 74].

Entropy, Information, and Divergence

Concepts from information theory play a central role in the study of learning and
inference in exponential families. Given a probability distribution p(x) defined on a
discrete space X , Shannon’s measure of entropy (in natural units, or nats) equals

H(p) = −
∑

x∈X

p(x) log p(x) (2.6)

In such diverse fields as communications, signal processing, and statistical physics,
entropy arises as a natural measure of the inherent uncertainty in a random variable [49].
The differential entropy extends this definition to continuous spaces:

H(p) = −
∫

X
p(x) log p(x) dx (2.7)

In both discrete and continuous domains, the (differential) entropy H(p) is concave,
continuous, and maximal for uniform densities. However, while the discrete entropy is
guaranteed to be non-negative, differential entropy is sometimes less than zero.

For problems of model selection and approximation, we need a measure of the
distance between probability distributions. The relative entropy or Kullback-Leibler
(KL) divergence between two probability distributions p(x) and q(x) equals

D(p || q) =

∫

X
p(x) log

p(x)

q(x)
dx (2.8)

Important properties of the KL divergence follow from Jensen’s inequality [49], which
bounds the expectation of convex functions:

E[f(x)] ≥ f(E[x]) for any convex f : X → R (2.9)
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Applying Jensen’s inequality to the logarithm of eq. (2.8), which is concave, it is eas-
ily shown that the KL divergence D(p || q) ≥ 0, with D(p || q) = 0 if and only if
p(x) = q(x) almost everywhere. However, it is not a true distance metric because
D(p || q) 6= D(q || p). Given a target density p(x) and an approximation q(x), D(p || q)
can be motivated as the information gain achievable by using p(x) in place of q(x) [49].
Interestingly, the alternate KL divergence D(q || p) also plays an important role in the
development of variational methods for approximate inference (see Sec. 2.3).

An important special case arises when we consider the dependency between two
random variables x and y. Let pxy(x, y) denote their joint distribution, px(x) and
py(y) their corresponding marginals, and X and Y their sample spaces. The mutual
information between x and y then equals

I(pxy) , D(pxy || pxpy) =

∫

X

∫

Y
pxy(x, y) log

pxy(x, y)

px(x)py(y)
dy dx (2.10)

= H(px) + H(py) − H(pxy) (2.11)

where eq. (2.11) follows from algebraic manipulation. The mutual information can be
interpreted as the expected reduction in uncertainty about one random variable from
observation of another [49].

Projections onto Exponential Families

In many cases, learning problems can be posed as a search for the best approximation
of an empirically derived target density p̃(x). As discussed in the previous section, the
KL divergence D(p̃ || q) is a natural measure of the accuracy of an approximation q(x).
For exponential families, the optimal approximating density is elegantly characterized
by the following moment–matching conditions:

Proposition 2.1.2. Let p̃ denote a target probability density, and pθ an exponential
family. The approximating density minimizing D(p̃ || pθ) then has canonical parameters
θ̂ chosen to match the expected values of that family’s sufficient statistics:

Eθ̂[φa(x)] =

∫

X
φa(x) p̃(x) dx a ∈ A (2.12)

For minimal families, these optimal parameters θ̂ are uniquely determined.

Proof. From the definition of KL divergence (eq. (2.8)), we have

D(p̃ || pθ) =

∫

X
p̃(x) log

p̃(x)

p(x | θ)
dx

=

∫

X
p̃(x) log p̃(x) dx −

∫

X
p̃(x)

[
log ν(x) +

∑

a∈A

θaφa(x) − Φ(θ)

]
dx

= −H(p̃) −
∫

X
p̃(x) log ν(x) dx −

∑

a∈A

θa

∫

X
φa(x) p̃(x) dx + Φ(θ)
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Taking derivatives with respect to θa and setting ∂D(p̃ || pθ) /∂θa = 0, we then have

∂Φ(θ)

∂θa
=

∫

X
φa(x) p̃(x) dx a ∈ A

Equation (2.12) follows from the cumulant generating properties of Φ(θ) (eq. (2.4)).
Because Φ(θ) is strictly convex for minimal families (Prop. 2.1.1), the canonical param-
eters θ̂ satisfying eq. (2.12) achieve the unique global minimum of D(p̃ || pθ).

In information geometry, the density satisfying eq. (2.12) is known as the I–projection
of p̃(x) onto the e–flat manifold defined by the exponential family’s canonical param-
eters [6, 52]. Note that the optimal projection depends only the potential functions’
expected values under p̃(x), so that these statistics are sufficient to determine the clos-
est approximation.

In many applications, rather than an explicit target density p̃(x), we instead observe
L independent samples {x(`)}L

`=1 from that density. In this situation, we define the
empirical density of the samples as follows:

p̃(x) =
1

L

L∑

`=1

δ
(
x, x(`)

)
(2.13)

Here, δ
(
x, x(`)

)
is the Dirac delta function for continuous X , and the Kronecker delta

for discrete X . Specializing Prop. 2.1.2 to this case, we find a correspondence between
information projection and maximum likelihood (ML) parameter estimation.

Proposition 2.1.3. Let pθ denote an exponential family with canonical parameters θ.
Given L independent, identically distributed samples {x(`)}L

`=1, with empirical density

p̃(x) as in eq. (2.13), the maximum likelihood estimate θ̂ of the canonical parameters
coincides with the empirical density’s information projection:

θ̂ = arg max
θ

L∑

`=1

log p(x(`) | θ) = arg min
θ

D(p̃ || pθ) (2.14)

These optimal parameters are uniquely determined for minimal families, and charac-
terized by the following moment matching conditions:

Eθ̂[φa(x)] =
1

L

L∑

`=1

φa(x
(`)) a ∈ A (2.15)
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Proof. Expanding the KL divergence from p̃(x) (eq. (2.13)), we have

D(p̃ || pθ) =

∫

X
p̃(x) log p̃(x) dx −

∫

X
p̃(x) log p(x | θ) dx

= −H(p̃) −
∫

X

1

L

L∑

`=1

δ
(
x, x(`)

)
log p(x | θ) dx

= −H(p̃) − 1

L

L∑

`=1

log p(x(`) | θ)

Because H(p̃) does not depend on θ, the parameters minimizing D(p̃ || pθ) and maxi-
mizing the expected log–likelihood coincide, establishing eq. (2.14). The unique char-
acterization of θ̂ via moment–matching (eq. (2.15)) then follows from Prop. 2.1.2.

In principle, Prop. 2.1.2 and 2.1.3 suggest a straightforward procedure for learning ex-
ponential familes: estimate appropriate sufficient statistics, and then find correspond-
ing canonical parameters via convex optimization [6, 15, 36, 52]. In practice, however,
significant difficulties may arise. For example, practical applications often require semi-
supervised learning from partially labeled training data, so that the needed statistics
cannot be directly measured. Even when sufficient statistics are available, calculation
of the corresponding parameters can be intractable in large, complex models.

These results also have important implications for the selection of appropriate ex-
ponential families. In particular, because the chosen statistics are sufficient for param-
eter estimation, the learned model cannot capture aspects of the target distribution
neglected by these statistics. These concerns motivate our later development of non-
parametric methods (see Sec. 2.5) which extend exponential families to learn richer,
more flexible models.

Maximum Entropy Models

In the previous section, we argued that certain statistics are sufficient to characterize
the best exponential family approximation of a given target density. The following
theorem shows that if these statistics are the only available information about a target
density, then the corresponding exponential family provides a natural model.

Theorem 2.1.1. Consider a collection of statistics {φa | a ∈ A}, whose expectations
with respect to some target density p̃(x) are known:

∫

X
φa(x) p̃(x) dx = µa a ∈ A (2.16)

The unique distribution p̂(x) maximizing the entropy H(p̂), subject to these moment
constraints, is then a member of the exponential family of eq. (2.1), with ν(x) = 1 and
canonical parameters θ̂ chosen so that Eθ̂[φa(x)] = µa.
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Proof. The general form of eq. (2.1) can be motivated by a Lagrangian formulation of
this constrained optimization problem. Taking derivatives, the Lagrange multipliers
become the exponential family’s canonical parameters. Global optimality can then be
verified via a bound based on the KL divergence [21, 49]. A related characterization of
exponential families with reference measures ν(x) 6= 1 is also possible [21].

Note that eq. (2.16) implicitly assumes the existence of some distribution satisfying
the specified moment constraints. In general, verifying this feasibility can be extremely
challenging [311], relating to classic moment inequality [25, 176] and covariance exten-
sion [92, 229] problems. Also, given insufficient moment constraints for non–compact
continous spaces, the maximizing density may be improper and have infinite entropy.

Recall that the entropy measures the inherent uncertainty in a random variable.
Thus, if the sufficient statistics of eq. (2.16) are the only available characterization of
a target density, the corresponding exponential family is justified as the model which
imposes the fewest additional assumptions about the data generation process.

¥ 2.1.2 Learning with Prior Knowledge

The results of the previous sections show how exponential families use sufficient statis-
tics to characterize the likelihood of observed training data. Frequently, however, we
also have prior knowledge about the expected location, scale, concentration, or other
features of the process generating the data. When learning from small datasets, con-
sistent incorporation of prior knowledge can dramatically improve the accuracy and
robustness of the resulting model.

In this section, we develop Bayesian methods for learning and inference which treat
the “parameters” of exponential family densities as random variables. In addition to
allowing easy incorporation of prior knowledge, this approach provides natural confi-
dence estimates for models learned from noisy or sparse data. Furthermore, it leads
to powerful methods for transferring knowledge among multiple related learning tasks.
See Bernardo and Smith [21] for a more formal, comprehensive survey of this topic.

Analysis of Posterior Distributions

Given an exponential family p(x | θ) with canonical parameters θ, Bayesian analysis
begins with a prior distribution p(θ | λ) capturing any available knowledge about the
data generation process. This prior distribution is typically itself a member of a family
of densities with hyperparameters λ. For the moment, we assume these hyperparameters
are set to some fixed value based on our prior beliefs.

Given L independent, identically distributed observations {x(`)}L
`=1, two computa-

tions arise frequently in statistical analyses. Using Bayes’ rule, the posterior distribution
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of the canonical parameters can be written as follows:

p(θ | x(1), . . . , x(L), λ) =
p(x(1), . . . , x(L) | θ, λ) p(θ | λ)∫

Θ p(x(1), . . . , x(L) | θ, λ) p(θ | λ) dθ
(2.17)

∝ p(θ | λ)
L∏

`=1

p(x(`) | θ) (2.18)

The proportionality symbol of eq. (2.18) represents the constant needed to ensure in-
tegration to unity (in this case, the data likelihood of eq. (2.17)). Recall that, for
minimal exponential families, the canonical parameters are uniquely associated with
expectations of that family’s sufficient statistics (Prop. 2.1.3). The posterior distribu-
tion of eq. (2.18) thus captures our knowledge about the statistics likely to be exhibited
by future observations.

In many situations, statistical models are used primarily to predict future observa-
tions. Given L independent observations as before, the predictive likelihood of a new
observation x̄ equals

p(x̄ | x(1), . . . , x(L), λ) =

∫

Θ
p(x̄ | θ) p(θ | x(1), . . . , x(L), λ) dθ (2.19)

where the posterior distribution over parameters is as in eq. (2.18). By averaging over
our posterior uncertainty in the parameters θ, this approach leads to predictions which
are typically more robust than those based on a single parameter estimate.

In principle, a fully Bayesian analysis should also place a prior distribution p(λ)
on the hyperparameters. In practice, however, computational considerations frequently
motivate an empirical Bayesian approach [21, 75, 107] in which λ is estimated by max-
imizing the training data’s marginal likelihood:

λ̂ = arg max
λ

p(x(1), . . . , x(L) | λ) (2.20)

= arg max
λ

∫

Θ
p(θ | λ)

L∏

`=1

p(x(`) | θ) dθ (2.21)

In situations where this optimization is intractable, cross–validation approaches which
optimize the predictive likelihood of a held–out data set are often useful [21].

More generally, the predictive likelihood computation of eq. (2.19) is itself in-
tractable for many practical models. In these cases, the parameters’ posterior dis-
tribution (eq. (2.18)) is often approximated by a single maximum a posteriori (MAP)
estimate:

θ̂ = arg max
θ

p(θ | x(1), . . . , x(L), λ) (2.22)

= arg max
θ

p(θ | λ)
L∏

`=1

p(x(`) | θ) (2.23)
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This approach is best justified when the training set size L is very large, so that the pos-
terior distribution of eq. (2.22) is tightly concentrated [21, 107]. Sometimes, however,
MAP estimates are used with smaller datasets because they are the only computation-
ally viable option.

Parametric and Predictive Sufficiency

When computing the posterior distributions and predictive likelihoods motivated in
the previous section, it is very helpful to have compact ways of characterizing large
datasets. For exponential families, the notions of sufficiency introduced in Sec. 2.1.1
can be extended to simplify learning with prior knowledge.

Theorem 2.1.2. Let p(x | θ) denote an exponential family with canonical parameters θ,
and p(θ | λ) a corresponding prior density. Given L independent, identically distributed
samples {x(`)}L

`=1, consider the following statistics:

φ(x(1), . . . , x(L)) ,

{
1

L

L∑

`=1

φa(x
(`))

∣∣∣ a ∈ A
}

(2.24)

These empirical moments, along with the sample size L, are then said to be parametric
sufficient for the posterior distribution over canonical parameters, so that

p(θ | x(1), . . . , x(L), λ) = p(θ | φ(x(1), . . . , x(L)) , L, λ) (2.25)

Equivalently, they are predictive sufficient for the likelihood of new data x̄:

p(x̄ | x(1), . . . , x(L), λ) = p(x̄ | φ(x(1), . . . , x(L)) , L, λ) (2.26)

Proof. Parametric sufficiency follows from the Neyman factorization criterion, which
is satisfied by any exponential family. The correspondence between parametric and
predictive sufficiency can then be argued from eqs. (2.18, 2.19). For details, see Sec.
4.5 of Bernardo and Smith [21].

This theorem makes exponential families particularly attractive when learning from
large datasets, due to the often dramatic compression provided by the statistics of
eq. (2.24). It also emphasizes the importance of selecting appropriate sufficient statis-
tics, since other features of the data cannot affect subsequent model predictions.

Analysis with Conjugate Priors

Theorem 2.1.2 shows that statistical predictions in exponential families are functions
solely of the chosen sufficient statistics. However, it does not provide an explicit char-
acterization of the posterior distribution over model parameters, or guarantee that the
predictive likelihood can be computed tractably. In this section, we describe an expres-
sive family of prior distributions which are also analytically tractable.
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Let p(x | θ) denote a family of probability densities parameterized by θ. A family of
prior densities p(θ | λ) is said to be conjugate to p(x | θ) if, for any observation x and
hyperparameters λ, the posterior distribution p(θ | x, λ) remains in that family:

p(θ | x, λ) ∝ p(x | θ) p(θ | λ) ∝ p
(
θ | λ̄

)
(2.27)

In this case, the posterior distribution is compactly described by an updated set of
hyperparameters λ̄. For exponential families parameterized as in eq. (2.1), conjugate
priors [21, 36] take the following general form:

p(θ | λ) = exp

{
∑

a∈A

θaλ0λa − λ0Φ(θ) − Ω(λ)

}
(2.28)

While this functional form duplicates the exponential family’s, the interpretation is
different: the density is over the space of parameters Θ, and determined by hyperpa-
rameters λ. The conjugate prior is proper, or normalizable, when the hyperparameters
take values in the space Λ where the log normalization constant Ω(λ) is finite:

Ω(λ) = log

∫

Θ
exp

{
∑

a∈A

θaλ0λa − λ0Φ(θ)

}
dθ (2.29)

Λ ,

{
λ ∈ R

|A|+1 | Ω(λ) < ∞
}

(2.30)

Note that the dimension of the conjugate family’s hyperparameters λ is one larger than
the corresponding canonical parameters θ.

The following result verifies that the conjugate family of eq. (2.28) satisfies the
definition of eq. (2.27), and provides an intuitive interpretation for the hyperparameters:

Proposition 2.1.4. Let p(x | θ) denote an exponential family with canonical param-
eters θ, and p(θ | λ) a family of conjugate priors defined as in eq. (2.28). Given L
independent samples {x(`)}L

`=1, the posterior distribution remains in the same family:

p(θ | x(1), . . . , x(L), λ) = p
(
θ | λ̄

)
(2.31)

λ̄0 = λ0 + L λ̄a =
λ0λa +

∑L
`=1 φa(x

(`))

λ0 + L
a ∈ A (2.32)

Integrating over Θ, the log–likelihood of the observations can then be compactly written
using the normalization constant of eq. (2.29):

log p(x(1), . . . , x(L) | λ) = Ω
(
λ̄
)
− Ω(λ) +

L∑

`=1

log ν(x(`)) (2.33)
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Proof. Expanding the posterior distribution as in eq. (2.18), we have

p(θ | x(1), . . . , x(L), λ) ∝ p(θ | λ)
L∏

`=1

p(x(`) | θ)

∝ exp

{
∑

a∈A

θaλ0λa − λ0Φ(θ)

}
L∏

`=1

ν(x(`)) exp

{
∑

a∈A

θaφa(x
(`)) − Φ(θ)

}

∝ exp

{
∑

a∈A

θa

(
λ0λa +

L∑

`=1

φa(x
(`))

)
− (λ0 + L)Φ(θ)

}
L∏

`=1

ν(x(`))

∝ exp

{
∑

a∈A

θa (λ0 + L)

(
λ0λa +

∑L
`=1 φa(x

(`))

λ0 + L

)
− (λ0 + L) Φ(θ)

}

Note that the last line absorbs the reference measure terms, which are constant with
respect to θ, into the proportionality constant. The posterior hyperparameters of
eq. (2.32) can now be verified by comparison with eq. (2.28). Likelihoods are determined
by the following integral over Θ:

p(x(1), . . . , x(L) | λ) =

∫

Θ
p(θ | λ)

L∏

`=1

p(x(`) | θ) dθ

=

∫

Θ
exp

{
∑

a∈A

θaλ0λa − λ0Φ(θ) − Ω(λ)

}
L∏

`=1

ν(x(`)) exp

{
∑

a∈A

θaφa(x
(`)) − Φ(θ)

}
dθ

= exp{−Ω(λ)}
∫

Θ
exp

{
∑

a∈A

θa

(
λ0λa +

L∑

`=1

φa(x
(`))

)
− (λ0 + L)Φ(θ)

}
dθ

L∏

`=1

ν(x(`))

Identifying the second term as an unnormalized conjugate prior, with hyperparameters
λ̄, the log–likelihood of eq. (2.33) then follows from eq. (2.29).

Note that the predictive likelihood p(x̄ | x(1), . . . , x(L), λ) of eq. (2.19) arises as a special
case of Prop. 2.1.4, where eq. (2.33) is used to determine the likelihood of x̄ given
hyperparameters incorporating previous observations (eq. (2.32)). For many common
exponential families, the log normalization constant Ω(λ) can be determined in closed
form, and likelihoods are easily computed.

Examining eq. (2.32), we see that the posterior hyperparameters λ̄a are a weighted
average of the prior hyperparameters λa and the corresponding sufficient statistics of
the observations. Conjugate priors are thus effectively described by a set of synthetic
pseudo–observations, where λa is interpreted as the average of φa(x) with respect to
this synthetic data. Confidence in these prior statistics is expressed via the effective
size λ0 > 0 of this synthetic dataset, which need not be integral. This interpretation
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often makes it easy to select an appropriate conjugate prior, since hyperparameters
correspond to sufficient statistics with intuitive meaning.

When the number of observations L is large relative to λ0, the posterior distribution
of eq. (2.31) is primarily determined by the observed sufficient statistics. Thus, while
conjugate families do not always contain truly non–informative reference priors [21],
sufficiently uninformative, or vague, conjugate priors can typically be constructed when
desired. More often, however, we find the ability to tractably include informative prior
knowledge to be very useful. In cases where conjugate priors cannot adequately capture
prior beliefs, mixtures of conjugate priors are often effective [21].

In principle, Prop. 2.1.4 provides a framework for conjugate analysis with any ex-
ponential family. In practice, however, canonical parameters may not provide the most
convenient, computationally efficient representation. The following sections examine
two conjugate families used extensively in this thesis, and develop specialized learning
and inference methods with practical advantages.

¥ 2.1.3 Dirichlet Analysis of Multinomial Observations

Consider a random variable x taking one of K discrete, categorical values, so that
X = {1, . . . , K}. Any probability mass function, or distribution, p(x) is then parame-
terized by the probabilities πk , Pr[x = k] of the K discrete outcomes:

p(x | π1, . . . , πK) =
K∏

k=1

π
δ(x,k)
k δ(x, k) ,

{
1 x = k

0 x 6= k
(2.34)

Given L observations {x(`)}L
`=1, the multinomial distribution [21, 107, 229] gives the

total probability of all possible length L discrete sequences taking those values:

p(x(1), . . . , x(L) | π1, . . . , πK) =
L!∏
k Ck!

K∏

k=1

πCk

k Ck ,

L∑

`=1

δ(x(`), k) (2.35)

When K = 2, this is known as the binomial distribution. Through comparison with
eq. (2.1), we see that multinomial distributions define regular exponential families with
sufficient statistics φk(x) = δ(x, k) and canonical parameters θk = log πk. In a min-
imal representation, only the first (K − 1) statistics are necessary. The multinomial
distribution is valid when its parameters lie in the (K − 1)–simplex:

ΠK−1 ,

{
(π1, . . . , πK)

∣∣∣ πk ≥ 0,
K∑

k=1

πk = 1

}
(2.36)

=

{
(π1, . . . , πK−1, 1 − ∑K−1

k=1 πk)
∣∣∣ πk ≥ 0,

K−1∑

k=1

πk ≤ 1

}
(2.37)

Note that the minimal representation of eq. (2.37) implicitly defines πK as the comple-
ment of the probabilities of the other (K − 1) categories.
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Given L observations as in eq. (2.35), Prop. 2.1.3 shows that the maximum like-
lihood estimates of the multinomial parameters π = (π1, . . . , πK) equal the empirical
frequencies of the discrete categories:

π̂ = arg max
π

L∑

`=1

log p(x(`) | π) =

(
C1

L
, . . . ,

CK

L

)
(2.38)

However, when L is not much larger than K, the ML estimate may assign zero proba-
bility to some values, and produce misleading predictions. In the following section, we
describe a widely used family of conjugate priors which is useful in these situations.

Dirichlet and Beta Distributions

The Dirichlet distribution [21, 107] is the conjugate prior for the multinomial exponen-
tial family. Adapting the general form of eq. (2.28), the Dirichlet distribution with
hyperparameters α = (α1, . . . , αK) can be written as follows:

p(π | α) =
Γ(

∑
k αk)∏

k Γ(αk)

K∏

k=1

παk−1
k αk > 0 (2.39)

Note that the Dirichlet distribution’s normalization constant involves a ratio of gamma
functions. By convention, the exponents are defined to equal (αk − 1) so that the
density’s mean has the following simple form:

Eα[πk] =
αk

α0
α0 ,

K∑

k=1

αk (2.40)

We use Dir(α) to denote a Dirichlet density with hyperparameters α. Samples can
be drawn from a Dirichlet distribution by normalizing a set of K independent gamma
random variables [107].

Often, we have no prior knowledge distinguishing the categories, and the K hyper-
parameters are thus set symmetrically as αk = α0/K. The variance of the multinomial
parameters then equals

Varα[πk] =
K − 1

K2(α0 + 1)
αk =

α0

K
(2.41)

See [107] for other moments of the Dirichlet distribution. Because the variance is
inversely proportional to α0, it is known as the precision parameter. With a minor
abuse of notation, we sometimes use Dir(α0) to denote this symmetric prior.

When K = 2, the Dirichlet distribution is equivalent to the beta distribution [107].
Denoting the beta density’s two hyperparameters by α and β, let π ∼ Beta(α, β) indi-
cate that

p(π | α, β) =
Γ(α + β)

Γ(α) Γ(β)
πα−1(1 − π)β−1 α, β > 0 (2.42)
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Note that by convention, samples from the beta density are the probability π ∈ [0, 1]
of the first category, while the two–dimensional Dirichlet distribution is equivalently
expressed in terms of the probability vector (π, 1−π) (see eq. (2.39)). As in eqs. (2.40)
and (2.41), the beta density’s hyperparameters can be interpreted as setting the prior
mean and variance of the binomial parameter π.

In Fig. 2.1, we illustrate several beta distributions. When α = β = 1, it assigns
equal prior probability to all possible binomial parameters π. Larger hyperparameters
(smaller variances) lead to unimodal priors concentrated on the chosen mean. We
also show examples of Dirichlet distributions on K = 3 multinomial categories, using
the minimal 2–simplex representation of eq. (2.37). As with the beta density, setting
αk = 1 (α0 = K) defines a uniform prior on the simplex, while larger precisions lead
to unimodal priors. Interestingly, smaller values of the hyperparameters (αk < 1) favor
sparse multinomial distributions which assign most of their probability mass to a subset
of the categories.

When analyzing multinomial data, it is sometimes useful to consider aggregate distri-
butions defined by combining a subset of the categories. If π ∼ Dir(α), the multinomial
parameters attained by aggregation are also Dirichlet [107]. For example, combining
the first two categories, we have

(π1 + π2, π3, . . . , πK) ∼ Dir(α1 + α2, α3, . . . , αK) (2.43)

More generally, aggregation of any subset of the categories produces a Dirichlet dis-
tribution with hyperparameters summed as in eq. (2.43). In particular, the marginal
distribution of any single component of a Dirichlet distribution follows a beta density:

πk ∼ Beta(αk, α0 − αk) (2.44)

This representation leads to an alternative, sequential procedure for drawing random
Dirichlet samples [107, 147].

Conjugate Posteriors and Predictions

Consider a set of L observations {x(`)}L
`=1 from a multinomial distribution p(x | π), with

Dirichlet prior p(π | α). Via conjugacy, the posterior distribution is also Dirichlet:

p(π | x(1), . . . , x(L), α) ∝ p(π | α) p(x(1), . . . , x(L) | π)

∝
K∏

k=1

παk+Ck−1
k ∝ Dir(α1 + C1, . . . , αK + CK) (2.45)

Here, Ck is the number of observations of category k, as in eq. (2.35). If L is sufficiently
large, the mean of this posterior distribution (see eq. (2.40)) provides a useful summary
statistic. We see that αk is equivalent to a (possibly non–integral) number of pseudo–
observations of category k, and the precision α0 is the total size of the pseudo–dataset.
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Figure 2.1. Examples of beta and Dirichlet distributions. Top: Beta densities with large hyperpa-
rameters are unimodal (left), while small values favor biased binomial distributions (right). Bottom:

Dirichlet densities on K = 3 categories, visualized on the simplex Π2 = (π1, π2, 1−π1 −π2). We show a
uniform prior, an unbiased unimodal prior, a biased prior with larger precision α0, and a prior favoring
sparse multinomial distributions. Darker intensities indicate regions with higher probability.
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As discussed previously, the predictive likelihood of future observations x̄ (as in
eq. (2.19)) is often of interest. Using the Dirichlet normalization constant of eq. (2.39)
and cancelling terms, it can be shown that

p(x̄ = k | x(1), . . . , x(L), α) =
Ck + αk

L + α0
(2.46)

Note that Ck is the number of times category k was observed in the previous L ob-
servations (excluding x̄). Importantly, these observation counts provide easily updated
sufficient statistics which allow rapid predictive likelihood evaluation. Comparing this
prediction to that of eq. (2.38), we see that the raw frequencies underlying the ML
estimate have been smoothed by the pseudo–counts contributed by the Dirichlet prior.
More generally, Prop. 2.1.4 can be used to express the likelihood of multiple observations
as a ratio gamma functions [123].

¥ 2.1.4 Normal–Inverse–Wishart Analysis of Gaussian Observations

Consider a continuous–valued random variable x taking values in d–dimensional Eu-
clidean space X = R

d. A Gaussian or normal distribution [21, 107, 229] with mean µ
and covariance matrix Λ then has the following form:

p(x | µ,Λ) =
1

(2π)d/2|Λ|1/2
exp

{
−1

2
(x − µ)T Λ−1(x − µ)

}
(2.47)

This distribution, which we denote by N (µ,Λ), is normalizable if and only if Λ is positive
definite. Given L independent Gaussian observations {x(`)}L

`=1, their joint likelihood is

p(x(1), . . . , x(L) | µ,Λ) ∝ |Λ|−L/2 exp

{
−1

2

L∑

`=1

(x(`) − µ)T Λ−1(x(`) − µ)

}
(2.48)

The maximum likelihood estimates of the Gaussian’s parameters, based on this data,
are the sample mean and covariance:

µ̂ =
1

L

L∑

`=1

x(`) Λ̂ =
1

L

L∑

`=1

(x(`) − µ̂)(x(`) − µ̂)T (2.49)

Expanding the quadratic form of eq. (2.47), we see that Gaussian densities define a
regular exponential family, with canonical parameters proportional to the Gaussian’s
information parameterization (Λ−1, Λ−1µ). The sample mean and covariance, or equiv-
alently sums of the observations and their outer products, provide sufficient statistics.

Gaussian Inference

Suppose that x and y are two jointly Gaussian random vectors, with distribution
[
x
y

]
∼ N

([
µx

µy

]

,

[
Λx Λxy

Λyx Λy

])
(2.50)
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Assuming a fixed covariance, the conjugate prior for a Gaussian’s mean is another
Gaussian. The conditional distribution of x given y is thus also Gaussian [107, 167, 229],
with mean x̂ and covariance Λ̂x given by the normal equations:

x̂ = µx + ΛxyΛy
−1(y − µy) (2.51)

Λ̂x = Λx − ΛxyΛy
−1Λyx (2.52)

The conditional mean x̂ is the linear least squares estimate minimizing the mean squared
error E

[
(x − x̂)2 | y

]
, while the error covariance matrix Λ̂x measures the reliability of

x̂. Note that for Gaussian densities, Λ̂x is not a function of the observed vector y, but
does depend on the joint statistics of x and y.

In many problem domains, the observations y are naturally expressed as a noisy
linear function of the latent variables x:

y = Cx + v v ∼ N (µv, Λv) (2.53)

Assuming x and v are independent, the normal equations then become

x̂ = µx + ΛxCT
(
CΛxCT + Λv

)−1
(y − (Cµx + µv)) (2.54)

Λ̂x = Λx − ΛxCT
(
CΛxCT + Λv

)−1
CΛx (2.55)

Often, these equations are more conveniently expressed in an alternative information
form. Assuming Λx and Λv are both positive definite, the matrix inversion lemma [130]
allows eqs. (2.54, 2.55) to be rewritten as follows:

Λ̂−1
x x̂ = Λx

−1µx + CT Λv
−1(y − µv) (2.56)

Λ̂−1
x = Λx

−1 + CT Λv
−1C (2.57)

This information form plays an important role in the development of tractable compu-
tational methods for Gaussian graphical models (see Sec. 2.2.2).

Normal–Inverse–Wishart Distributions

Any distribution satisfying certain spherical symmetries has a representation as a con-
tinuous mixture of Gaussian densities, for some prior on that Gaussian’s covariance
matrix [21, Sec. 4.4]. The conjugate prior for the covariance matrix of a Gaussian
distribution with known mean is the inverse–Wishart distribution [107], a multivari-
ate generalization of the scaled inverse–χ2 density. The d–dimensional inverse–Wishart
density, with covariance parameter ∆ and ν degrees of freedom,2 equals

p(Λ | ν, ∆) ∝ |Λ|−( ν+d+1
2 ) exp

{
−1

2
tr(ν∆Λ−1)

}
(2.58)

2In some texts [107], inverse–Wishart distributions are instead parameterized by a scale matrix ν∆.
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We denote this density by W(ν, ∆). An inverse–Wishart prior is proper when ν > d,
and skewed towards larger covariances, so that its mean and mode equal

Eν [Λ] =
ν

ν − d − 1
∆ ν > d + 1 (2.59)

arg max
Λ

W(Λ; ν, ∆) =
ν

ν + d + 1
∆ (2.60)

The degrees of freedom ν acts as a precision parameter, and can be interpreted as
the size of a pseudo–dataset with sample covariance ∆. However, because the inverse–
Wishart density is rotationally invariant, it cannot model situations in which the degree
of prior knowledge varies across different covariance entries or subspaces. Inverse–
Wishart samples can be drawn via appropriate transformations of standard Gaussian
random variables [107].

If a multivariate Gaussian’s mean and covariance are both uncertain, the normal–
inverse–Wishart distribution [107] provides an appropriate conjugate prior. Following
eq. (2.58), the covariance matrix is assigned an inverse–Wishart prior Λ ∼ W(ν, ∆).
Conditioned on Λ, the mean µ ∼ N (ϑ, Λ/κ). Here, ϑ is the expected mean, for which
we have κ pseudo–observations on the scale of observations x ∼ N (µ,Λ). The joint
prior distribution, denoted by NW(κ, ϑ, ν, ∆), then takes the following form:

p(µ,Λ | κ, ϑ, ν, ∆) ∝ |Λ|−( ν+d
2

+1) exp

{
−1

2
tr(ν∆Λ−1) − κ

2
(µ − ϑ)T Λ−1(µ − ϑ)

}
(2.61)

Fig. 2.2 illustrates a normal–inverse–χ2 density, the special case arising when d = 1.
Note that the mean and variance are dependent, so that there is greater uncertainty in
the mean value for larger underlying variances. This scaling is often, but not always,
appropriate, and is necessary if conjugacy is desired [107]. Fig. 2.2 also shows several
Gaussian distributions drawn from a two–dimensional normal–inverse–Wishart prior.

Conjugate Posteriors and Predictions

Consider a set of L observations {x(`)}L
`=1 from a multivariate Gaussian distribu-

tion N (µ,Λ) with normal–inverse–Wishart prior NW(κ, ϑ, ν, ∆). Via conjugacy, the
posterior distribution p

(
µ,Λ | x(1), . . . , x(`), κ, ϑ, ν, ∆

)
is also normal–inverse–Wishart,

and thus compactly described by a set of updated hyperparameters NW
(
κ̄, ϑ̄, ν̄, ∆̄

)
.

Through manipulation of the quadratic form in eq. (2.61), it can be shown [107] that
these posterior hyperparameters equal

κ̄ϑ̄ = κϑ +
L∑

`=1

x(`) κ̄ = κ + L (2.62)

ν̄∆̄ = ν∆ +
L∑

`=1

x(`)x(`)T

+ κϑϑT − κ̄ϑ̄ϑ̄T ν̄ = ν + L (2.63)
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Figure 2.2. Examples of normal–inverse–Wishart distributions. Left: Joint probability density of a
scalar normal–inverse–χ2 distribution (µ, Λ) ∼ NW(2, 0, 4, 1). Right: Covariance ellipses corresponding
to ten samples from a two–dimensional normal–inverse–Wishart distribution (µ, Λ) ∼ NW(0.3, 0, 4, I2).

To efficiently represent these posterior parameters, we can cache the observations’ sum
(eq. (2.62)), and the Cholesky decomposition [63, 118] of the sum of observation outer
products (eq. (2.63)). Cholesky decompositions are numerically robust, can be recur-
sively updated as observations are added or removed, and allow fast likelihood evalua-
tion through the solution of triangulated linear systems.

Integrating over the parameters of the normal–inverse–Wishart posterior distribu-
tion, the predictive likelihood of a new observation x̄ is multivariate Student–t with
(ν̄ − d + 1) degrees of freedom [107]. Assuming ν̄ > (d + 1), this posterior density has
finite covariance, and can be approximated by a moment–matched Gaussian:

p(x̄ | x(1), . . . , x(L), κ, ϑ, ν, ∆) ≈ N
(

x̄; ϑ̄,
(κ̄ + 1)ν̄

κ̄(ν̄ − d − 1)
∆̄

)
(2.64)

As illustrated in Fig. 2.3, Student–t distributions have heavier tails than Gaussians, due
to integration over uncertainty in the true covariance. However, the KL divergence plot
of Fig. 2.3 shows that, for small d, the Gaussian approximation is accurate unless ν̄ is
very small. Examining eqs. (2.62, 2.63), we see that the predictive likelihood depends
on regularized estimates of the mean and covariance of previous observations.

¥ 2.2 Graphical Models

Many practical applications, including the computer vision tasks investigated in this
thesis, involve very large collections of random variables. In these situations, direct
application of the classic exponential families introduced in the previous section is
typically infeasible. For example, a multinomial model of the joint distribution of
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Figure 2.3. Approximation of Student–t predictive distributions by a Gaussian with moments matched
as in eq. (2.64). We compare one–dimensional Gaussian and heavier–tailed Student–t densities with
ν = 4 (left) and ν = 10 (center) degrees of freedom. For moderate ν, the Gaussian approximation
becomes very accurate (see plot of KL divergence versus ν, right).

100 binary variables has 2100 ≈ 1030 parameters. Even if such a density could be
stored and manipulated, reliable parameter estimation would require an unrealistically
massive dataset. Similarly, in fields such as image processing [85, 95, 189, 285] and
oceanography [86, 330], estimation of random fields containing millions of continuous
variables is not uncommon. However, explicit computations with large, unstructured
covariance matrices are extremely difficult [63], typically requiring specialized, parallel
hardware.

Probabilistic graphical models provide a powerful, flexible framework which ad-
dresses these concerns [40, 50, 159, 177, 231, 249, 311, 339]. Graphs are used to decom-
pose multivariate, joint distributions into a set of local interactions among small subsets
of variables. These local relationships produce conditional independencies which lead
to efficient learning and inference algorithms. Moreover, their modular structure pro-
vides an intuitive language for expressing domain–specific knowledge about variable
relationships, and facilitates the transfer of modeling advances to new applications.

In the following sections, we introduce and compare several different families of
graphical models, including directed Bayesian networks, undirected Markov random
fields, and factor graphs. We then relate these models to classic notions of exchange-
ability, motivating a family of hierarchical models used extensively in this thesis.

¥ 2.2.1 Brief Review of Graph Theory

We begin by reviewing definitions from graph theory which are useful in describing
graphical models. For more detailed surveys of these concepts, see [50, 177].

A graph G = (V, E) consists of a set of nodes or vertices V, and a corresponding set of
edges E . Each edge (i, j) ∈ E connects two distinct nodes i, j ∈ V. For directed graphs,
an edge (i, j) connects a parent vertex i to its child j, and is pictorially represented by
an arrow (see Fig. 2.4(a)). The set of all parents Γ(j) of node j is then given by

Γ(j) , {i ∈ V | (i, j) ∈ E} (2.65)

In undirected graphs, an edge (i, j) ∈ E if and only if (j, i) ∈ E , as depicted by an



Sec. 2.2. Graphical Models 49

arrowless line (see Fig. 2.4(c)). For such graphs, Γ(j) are known as the neighbors of
node j, since i ∈ Γ(j) whenever j ∈ Γ(i). It is also possible to define chain graphs
which mix undirected and directed edges [37, 50, 177], but we do not use them in this
thesis. Within any graph, a clique is a set of nodes for which all pairs are connected by
an edge. If the entire graph forms a clique, it is said to be complete.

When describing the statistical properties of graphical models, the structural prop-
erties of the underlying graph play an important role. A path between nodes i0 6= iT
is a sequence of distinct nodes (i0, i1, . . . , iT ) such that (i`−1, i`) ∈ E for ` = 1, . . . , T .
A cycle, or loop,3 is a path which starts and ends with the same node i0 = iT , and for
which all internal nodes (i1, . . . , iT−1) are distinct. If there is a path (in either direc-
tion) between every pair of nodes, G is connected. If an edge joins two non–consecutive
vertices within some cycle, it is called a chord. When the undirected version of G (ob-
tained by replacing all directed edges with undirected ones) has no cycles, the graph
is tree–structured. Within any tree, a leaf node has at most one neighbor. Note that
it is easy to construct acyclic, directed graphs which are not trees. For any graph, the
diameter equals the number of edges in the longest path between any two nodes.

Hypergraphs extend graphs by introducing hyperedges connecting subsets with more
than two vertices [177]. We denote a hypergraph by H = (V,F), where V are vertices as
before, and each hyperedge f ∈ F is some subset of those vertices (f ⊂ V). Pictorially,
we represent hypergraphs by bipartite graphs with circular nodes for each vertex i ∈ V,
and square nodes for each hyperedge f ∈ F (see Fig. 2.4(b)). Lines are then used to
connect hyperedge nodes to their associated vertex set [175].

¥ 2.2.2 Undirected Graphical Models

Given a graph G = (V, E) or hypergraph H = (V,F), graphical models represent
probability distributions by associating each node i ∈ V with a random variable xi ∈ Xi.
The structure of the joint distribution p(x), where x , {xi | i ∈ V} takes values in
the joint sample space X = X1 × · · · × XN , is then determined by the corresponding
(hyper)edges. In this section, we introduce three closely related families of graphical
models which use edges to encode local, probabilistic constraints.

Factor Graphs

Hypergraphs H = (V,F) provide an intuitive means of describing probability distribu-
tions p(x). For any f ∈ F , let xf , {xi | i ∈ f} denote the corresponding set of random
variables. A factor graph then defines the joint distribution as a normalized product of
local potential functions defined on these hyperedges:

p(x) ∝
∏

f∈F

ψf (xf ) (2.66)

3In graph theoretic terminology, a loop is an edge connecting a node to itself [177]. However, as
graphical models do not have self–connections, in this thesis we use the terms loop and cycle inter-
changeably, as is standard in the graphical inference literature [219, 319].
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Figure 2.4. Three graphical representations of a distribution over five random variables (see [175]).
(a) Directed graph G depicting a causal, generative process. (b) Factor graph expressing the factoriza-
tion underlying G. (c) A “moralized” undirected graph capturing the Markov structure of G.

For example, in the factor graph of Fig. 2.5(c), there are 5 variable nodes, and the joint
distribution has one potential for each of the 3 hyperedges:

p(x) ∝ ψ123(x1, x2, x3)ψ234(x2, x3, x4)ψ35(x3, x5)

Often, these potentials can be interpreted as local dependencies or constraints. Note,
however, that ψf (xf ) does not typically correspond to the marginal distribution pf (xf ),
due to interactions with the graph’s other potentials.

In many applications, factor graphs are used to impose structure on an exponential
family of densities. In particular, suppose that each potential function is described by
the following unnormalized exponential form:

ψf (xf | θf ) = νf (xf ) exp





∑

a∈Af

θfaφfa(xf )



 (2.67)

Here, θf , {θfa | a ∈ Af} are the canonical parameters of the local exponential family
for hyperedge f . From eq. (2.66), the joint distribution can then be written as

p(x | θ) =

( ∏

f∈F

νf (xf )

)
exp





∑

f∈F

∑

a∈Af

θfaφfa(xf ) − Φ(θ)



 (2.68)

Comparing to eq. (2.1), we see that factor graphs define regular exponential fami-
lies [104, 311], with parameters θ = {θf | f ∈ F}, whenever local potentials are chosen
from such families. The results of Sec. 2.1 then show that local statistics, computed
over the support of each hyperedge, are sufficient for learning from training data. This



Sec. 2.2. Graphical Models 51

x2 x3

x1

x4 x5

x2 x3

x1

x4 x5

x2 x3

x1

x4 x5

x2 x3

x1

x4 x5

(a) (b) (c) (d)

Figure 2.5. An undirected graphical model, and three factor graphs with equivalent Markov properties.
(a) Undirected graph G representing five random variables. (b) Factor graph interpreting G as a pairwise
MRF. (c) Factor graph corresponding to the maximal cliques of G. (d) Another possible factorization
which is Markov with respect to G. In all cases, single-node factors are omitted for clarity.

guarantee can be extremely useful for large graphs with many variables. Note, however,
that interactions among overlapping potential functions induce global dependencies in
the parameters. Thus, as we discuss in more detail in Sec. 2.3, learning can be compu-
tationally difficult even when the potentials take simple forms.

Many widely used graphical models correspond to a particular choice of the ex-
ponential families in eq. (2.68). For example, any distribution on discrete spaces
Xi = {1, . . . , Ki} can be expressed in terms of a set of indicator potential functions which
enumerate all possible configurations of the variables within each factor [311]. Alter-
natively, jointly Gaussian random fields take potentials to be local quadratic functions.
The graph structure of these covariance selection models is then expressed via an inverse
covariance matrix which is sparse, with many entries equaling zero [64, 177, 268, 276].

The exponential family representation of eq. (2.68) is convenient for learning and
parameter estimation. In many applications, however, a model has already been deter-
mined (perhaps via MAP estimation as in Sec. 2.1.2), and we are instead interested in
inference problems. In such cases, we prefer the representation of eq. (2.66), since it
highlights the factorization underlying efficient computational methods.

Markov Random Fields

Undirected graphical models, or Markov random fields (MRFs), characterize distribu-
tions p(x) via a set of implied conditional independencies. In this section, we describe
these Markov properties, and relate them to an algebraic factorization similar to that
underlying factor graphs.

Given an undirected graph G = (V, E), let f , g and h denote three disjoint subsets
of V. Set h is said to separate sets f and g if every path between f and g passes through
some node in h. A stochastic process x is globally Markov with respect to G if xf and
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xg are independent conditioned on the variables xh in any separating set:

p(xf , xg | xh) = p(xf | xh) p(xg | xh) if h separates f from g (2.69)

This property generalizes temporal Markov processes, for which the past and future
are independent conditioned on the present. For example, the undirected graph of
Fig. 2.5(a) implies the following conditional independencies, among others:

p(x1, x2, x5 | x3, x4) = p(x1, x2 | x3, x4) p(x5 | x3)

p(x1, x4, x5 | x2, x3) = p(x1 | x2, x3) p(x4 | x2, x3) p(x5 | x3)

An important special case of eq. (2.69) guarantees that conditioned on its immediate
neighbors, the random variable at any node is independent of the rest of the process:

p
(
xi | xV\i

)
= p

(
xi | xΓ(i)

)
(2.70)

As we discuss in later sections, this local Markov property plays an important role in
the design of efficient learning and inference algorithms.

The following theorem, due to Hammersley and Clifford, shows that Markov random
fields are naturally parameterized via potential functions defined on the cliques of the
corresponding undirected graph.

Theorem 2.2.1 (Hammersley-Clifford). Let C denote the set of cliques of an undi-
rected graph G. A probability distribution defined as a normalized product of non-
negative potential functions on those cliques is then always Markov with respect to G:

p(x) ∝
∏

c∈C

ψc(xc) (2.71)

Conversely, any strictly positive density (p(x) > 0 for all x) which is Markov with
respect to G can be represented in this factored form.

Proof. There are a variety of ways to prove this result; see [26, 35, 43] for examples and
further discussion. For a degenerate Markov distribution which cannot be factored as
in eq. (2.71), see Lauritzen [177].

Comparing eq. (2.71) to eq. (2.66), we see that Markov random fields can always be
represented by a factor graph with one hyperedge for each of the graph’s cliques [175,
339]. This representation is also known as the clique hypergraph corresponding to
G [177]. Note that it is possible, but not necessary, to restrict this factorization to
maximal cliques which are not a strict subset of any other clique (see Fig. 2.5(c)).

In practice, Markov properties are used in two complementary ways. If a stochastic
process is known to satisfy certain conditional independencies, the Hammersley–Clifford
Theorem then motivates models parameterized by local sufficient statistics. Conversely,
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given any graphical model, the implied Markov properties can be exploited to design
more efficient learning and inference algorithms.

While undirected graphs fully specify a probability density’s Markov structure, they
do not unambigously determine that density’s factorization into potential functions. For
example, in Fig. 2.5 we show three different factor graphs, all of which are Markov with
respect to the same undirected graph. Because the differences among these factor-
izations have implications for learning and inference, the more detailed factor graph
representation is often preferable [96, 98, 175].

Pairwise Markov Random Fields

In many applications, it is convenient to consider a restricted class of pairwise Markov
random fields. Given an undirected graph G = (V, E), a pairwise MRF expresses the
joint distribution as a product of potential functions defined on that graph’s edges:

p(x) ∝
∏

(i,j)∈E

ψij(xi, xj)
∏

i∈V

ψi(xi) (2.72)

Because pairs of neighboring nodes always define cliques, the Hammersley–Clifford The-
orem guarantees that pairwise MRFs are Markov with respect to G. The inclusion of
single–node potentials ψi(xi) is not strictly necessary, but is often convenient. Pairwise
MRFs containing only binary variables are known as Ising models in the statistical
physics literature [337].

Fig. 2.5(b) shows the factor graph corresponding to a pairwise MRF, and contrasts
it with models incorporating higher order cliques. To avoid ambiguities, in this thesis we
only use undirected graphs to depict pairwise MRFs. For graphical models containing
interactions among three or more variables, we instead use a factor graph representation
which explicitly reveals the underlying factorization.

Many inference tasks can be posed as the estimation of a set of latent or hidden
variables x based on noisy observations y. In such cases, pairwise MRFs are sometimes
used to express the internal structure of the desired posterior distribution:

p(x | y) =
p(x, y)

p(y)
∝

∏

(i,j)∈E

ψij(xi, xj)
∏

i∈V

ψi(xi, y) (2.73)

Frequently, observations also decompose into local measurements y = {yi | i ∈ V}, so
that ψi(xi, y) = ψi(xi, yi). Fig. 2.6 shows two examples of pairwise MRFs used widely
in practice: a multiscale tree–structured graph [34, 41, 85, 86, 189, 330], and a nearest–
neighbor grid [26, 95, 108, 196, 285]. In both cases, shaded nodes represent noisy local
observations yi.

¥ 2.2.3 Directed Bayesian Networks

We now introduce a different family of graphical models derived from directed graphs
G = (V, E). As before, Bayesian networks associate each node i ∈ V with a random
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Figure 2.6. Sample pairwise Markov random fields, where open nodes represent hidden variables xi

and shaded nodes are local observations yi. Left: A multiscale tree–structured graph, in which coarse

scale nodes capture dependencies among an observed fine scale process. Right: A nearest–neighbor
grid in which each hidden variable is connected to its four closest spatial neighbors.

variable xi. However, in place of potential functions, directed models decompose p(x)
via the conditional density of each child node i given its parents Γ(i):

p(x) =
∏

i∈V

p
(
xi | xΓ(i)

)
(2.74)

For nodes i without parents (Γ(i) = ∅), we define p
(
xi | xΓ(i)

)
= p(xi). This factor-

ization is consistent whenever G is a directed acyclic graph, so that its edges specify a
valid partial ordering of the random variables [50, 128, 231]. For example, the directed
graph of Fig. 2.4(a) implies the following conditional densities:

p(x) = p(x1) p(x2) p(x3 | x1, x2) p(x4 | x3) p(x5 | x3)

Bayesian networks effectively define a causal generative process, beginning with nodes
without parents and proceeding from parent to child throughout the graph. In contrast,
direct sampling from undirected graphical models is often intractable (see Sec. 2.4).

The Markov properties of directed Bayesian networks are slightly different from
those of undirected graphical models. In particular, a random variable xi is condition-
ally independent of the remaining process given its parents xΓ(i), children {xj | i ∈ Γ(j)},
and its children’s parents. These relationships are captured by a corresponding moral
graph in which parents are connected (“married”) by additional undirected edges [50],
as in Fig. 2.4(c). Although factor graphs can express this Markov structure (see
Fig. 2.4(b)), doing so obscures the underlying causal, generative process. A directed
generalization of factor graphs has been proposed [96, 98], but we focus on simpler
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Figure 2.7. Directed graphical representation of a hidden Markov model (HMM) for T = 8 samples
of a temporal process. The hidden states xt capture dependencies among the observations yt.

Bayesian network representations. For a discussion of transformations allowing conver-
sion between undirected, directed, and factor graphs, see [175, 339].

In many applications, exponential families provide convenient parameterizations of
the conditional densities composing a Bayesian network. In general, directed models de-
fine curved exponential families [74], because conditional densities with multiple parents
may impose constraints on the set of achievable canonical parameters [104]. However,
this subtlety does not arise in the particular models considered by this thesis.

Hidden Markov Models

Directed graphical models provide the basis for a family of hidden Markov models
(HMMs) which are widely used to model temporal stochastic processes [8, 70, 163, 235].
Let y = {yt}T−1

t=0 denote observations of a temporal process collected at T discrete time
points. We assume that each observation yt is independently sampled conditioned on an
underlying hidden state xt. If we further assume that these states x = {xt}T−1

t=0 evolve
according to a first–order temporal Markov process, the joint distribution equals

p(x, y) = p(x0) p(y0 | x0)
T−1∏

t=1

p(xt | xt−1) p(yt | xt) (2.75)

Fig. 2.7 shows a directed graphical representation of this density. In later chapters, we
extend this model to develop methods for visual tracking of articulated objects.

Historically, models equivalent to HMMs were independently developed in several
different domains. For example, in speech recognition the hidden states typically take
values on some finite, discrete set, and statistical methods are used to learn dynamics
from speech waveforms [235]. In contrast, control theorists often use continuous state
space models to characterize the position, velocity, and other properties of physical
systems [8, 163]. Graphical models unify these disparate approaches, and allow advances
in learning and inference methods to be transferred between domains [50, 159, 249].

¥ 2.2.4 Model Specification via Exchangeability

In some applications, a graphical model’s structure is determined by the physical data
generation process. For example, HMMs (see Fig. 2.7) are often derived from a known
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dynamical system, while grid–structured MRFs (see Fig. 2.6) can arise from the dis-
cretization of stochastic partial differential equations. For other learning tasks, however,
the generative process may be unknown, or too complex to characterize explicitly. In
this section, we show how simple assumptions about the indistinguishability of different
observations lead naturally to a family of hierarchical, directed graphical models.

Consider a set of N random variables {xi}N
i=1. These variables are said to be ex-

changeable if every permutation, or reordering, of their indices has equal probability:

p(x1, . . . , xN ) = p
(
xτ(1), . . . , xτ(N)

)
for any permutation τ(·) (2.76)

This expression formalizes the concept of an unordered collection of random variables,
for which the chosen indices are purely notational. When no auxiliary information is
available, this assumption is usually reasonable. Extending this definition, a sequence
{xi}∞i=1 is infinitely exchangeable if every finite subsequence is exchangeable [21, 107].

As shown by the following theorem, exchangeable observations can always be rep-
resented via a prior distribution over some latent parameter space.

Theorem 2.2.2 (De Finetti). For any infinitely exchangeable sequence of random
variables {xi}∞i=1, xi ∈ X , there exists some space Θ, and corresponding density p(θ),
such that the joint probability of any N observations has a mixture representation:

p(x1, x2, . . . , xN ) =

∫

Θ
p(θ)

N∏

i=1

p(xi | θ) dθ (2.77)

When X is a K–dimensional discrete space, Θ may be chosen as the (K − 1)–simplex.
For Euclidean X , Θ is an infinite–dimensional space of probability measures.

Proof. De Finetti’s original proof for binary X dates to the 1930’s; see [127] for a simpler
proof of that case, and [21, Sec. 4.5] for generalizations and additional references.

Technically, the representation of eq. (2.77) is only guaranteed to exist when {xi}N
i=1

are part of an infinitely exchangeable sequence. However, for moderate N , the distor-
tion induced by assuming infinite exchangeability, when only finite exchangeability is
guaranteed, cannot be significant [21, Prop. 4.19].

De Finetti’s theorem is often taken as a justification for Bayesian methods, since
the infinite mixture representation of eq. (2.77) corresponds precisely with the marginal
likelihood of eq. (2.21). We see that exchangeability does not imply independence of
the observations, but conditional independence given a set of latent parameters θ. Note
also that for continuous sample spaces, these parameters are infinite–dimensional, since
there is no finite parameterization for the space of continuous densities. This motivates
a class of nonparametric methods which we discuss further in Sec. 2.5.

When applying the representation of eq. (2.77), it is common to assume some family
of prior distributions with hyperparameters λ, so that

p(x1, . . . , xN , θ | λ) = p(θ | λ)
N∏

i=1

p(xi | θ) (2.78)
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Figure 2.8. De Finetti’s representation of N exchangeable random variables {xi}
N
i=1 as a hierarchical

model. Each observation is independently sampled from a density with parameters θ, which are in turn
assigned a prior distribution with hyperparameters λ. Left: Explicit model for N = 7 variables. Right:

Compact plate representation of the N–fold replication of the observations xi.

This generative process can be described by the Bayesian network of Fig. 2.8, where
plates are used to compactly denote replicated variables [37, 159]. In Bayesian statistics,
this is known as a hierarchical model [21, 107] due to the layering by which observations
depend on parameters, which are in turn related to hyperparameters. Note that we have
explicitly included the parameters θ and hyperparameters λ (depicted by a rounded box)
in the graphical structure. While not strictly necessary, this approach is often useful in
learning problems where the parameters are of particular interest [50].

Finite Exponential Family Mixtures

Standard exponential family densities can be too inflexible to accurately describe many
complex, multimodal datasets. In these situations, data are often modeled via a fi-
nite mixture distribution [107, 203, 239, 249]. A K component mixture model takes the
following general form:

p(x | π, θ1, . . . , θK) =
K∑

k=1

πkf(x | θk) π ∈ ΠK−1 (2.79)

Each mixture component, or cluster, belongs to a parameterized family of probability
densities f(x | θ), whose distribution we equivalently denote by F (θ). Each data point
xi is generated by independently selecting one of K clusters according to the multinomial
distribution π, and then sampling from the chosen cluster’s data distribution:

zi ∼ π

xi ∼ F (θzi
)

(2.80)
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Figure 2.9. Directed graphical representations of a K component mixture model. Mixture weights
π ∼ Dir(α), while cluster parameters are assigned independent priors θk ∼ H(λ). Left: Indicator
variable representation, in which zi ∼ π is the cluster that generates xi ∼ F (θzi). Right: Alternative
distributional form, in which G is a discrete distribution on Θ taking K distinct values. θ̄i ∼ G are the
parameters of the cluster that generates xi ∼ F (θ̄i). We illustrate with a mixture of K = 4 Gaussians,
where cluster variances are known (bottom) and H(λ) is a Gaussian prior on cluster means (top).
Sampled cluster means θ̄1, θ̄2, and corresponding Gaussians, are shown for two observations x1, x2.

The unobserved indicator variable zi ∈ {1, . . . , K} specifies the unique cluster associated
with xi. Mixture models are widely used for unsupervised learning, where clusters are
used to discover subsets of the data with common attributes.

In most applications of mixture models, f(x | θk) is chosen to be an appropriate
exponential family. For example, Euclidean observations are often modeled via Gaus-
sian mixtures, so that the parameters θk = (µk, Λk) specify each cluster’s mean µk

and covariance Λk. When learning mixtures from data, it is often useful to place an
independent conjugate prior H, with hyperparameters λ, on each cluster’s parameters:

θk ∼ H(λ) k = 1, . . . , K (2.81)

Similarly, in the absence of prior knowledge distinguishing the clusters, the mixture
weights π can be assigned a symmetric Dirichlet prior with precision α:

π ∼ Dir
( α

K
, . . . ,

α

K

)
(2.82)

Fig. 2.9 shows a directed graphical model summarizing this generative process. As in
Fig. 2.8, plates are used to compactly denote the K cluster parameters {θk}K

k=1 and
N data points {xi}N

i=1. In Fig. 2.10, we illustrate several two–dimensional Gaussian
mixtures sampled from a conjugate, normal–inverse–Wishart prior.

Mixture models can equivalently be expressed in terms of a discrete distribution G
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Figure 2.10. Two randomly sampled mixtures of K = 5 two–dimensional Gaussians. Mixture pa-
rameters are generated from conjugate, normal–inverse–Wishart priors. For each mixture, we plot one
standard deviation covariance ellipses Λk with intensity proportional to their probability π ∼ Dir(α0),
α0 = 10. In each case, we also show N = 200 randomly sampled observations.

on the space Θ of cluster parameters:

G(θ) =
K∑

k=1

πkδ(θ, θk)
π ∼ Dir(α)

θk ∼ H(λ) k = 1, . . . , K
(2.83)

We generate each data point xi by sampling a set of parameters θ̄i from G:

θ̄i ∼ G

xi ∼ F
(
θ̄i

) (2.84)

This representation, which is statistically equivalent to the indicator variables used in
eq. (2.80), plays an important role in later hierarchical extensions. Note that G can
be seen as a discrete, K component approximation to the infinite–dimensional measure
arising in De Finetti’s Theorem. Fig. 2.9 shows a graphical representation of this
alternative form, and illustrates the generative process for a simple one–dimensional
Gaussian mixture with known variance.

The mixture models of Fig. 2.9 assume the number of clusters K to be a fixed, known
constant. In general, determining an appropriate mixture size is a difficult problem,
which has motivated a wide range of model selection procedures [46, 87, 203, 314]. In
Sec. 2.5, we discuss an alternative nonparametric approach which controls complexity
by placing prior distributions on infinite mixtures.
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Analysis of Grouped Data: Latent Dirichlet Allocation

In many domains, there are several groups of data which are thought to be produced by
related, but distinct, generative processes. For example, medical studies often combine
data collected at multiple sites, which examine a common treatment but may have
location–specific idiosyncrasies [75, 107]. In text analysis, the words composing a text
corpus are typically separated into different documents [31, 123, 140, 289]. Similarly,
computer vision systems like those developed in this thesis learn appearance models
from visual features detected in different training images [14, 79, 81, 266, 280, 282].

While it is simplest to analyze each group independently, doing so neglects critical
information when groups are individually ambiguous. Conversely, combining groups in
a single exchangeable dataset may lead to inappropriately biased estimates, and ob-
scures features distinguishing particular groups. By sharing random parameters among
groups, hierarchical Bayesian models provide an elegant compromise [21, 107, 216]. Pos-
terior dependencies between parameters then effectively transfer information between
related experiments, documents, or objects. Estimates based on these distributions are
“shrunk” together, so that groups share the strength of other datasets while retaining
distinctive features. For example, the classic James–Stein estimator, which uniformly
dominates the ML estimate of a multivariate Gaussian’s mean, can be derived via an
empirical Bayesian analysis of a particular hierarchical model [75].

Latent Dirichlet allocation (LDA) [31] extends mixture models (as in Fig. 2.9) to
learn clusters describing several related sets of observations. Given J groups of data, let
xj = (xj1, . . . , xjNj

) denote the Nj data points in group j, and x = (x1, . . . ,xJ). LDA
assumes that the data within each group are exchangeable, and independently sampled
from one of K latent clusters with parameters {θk}K

k=1. Letting πj ∈ ΠK−1 denote the
mixture weights for the jth group, we have

p(xji | πj , θ1, . . . , θK) =
K∑

k=1

πjkf(xji | θk) i = 1, . . . , Nj (2.85)

Comparing to eq. (2.79), we see that for individual groups LDA is equivalent to a finite
mixture model. LDA extends standard mixture models by sharing a common set of
clusters among several related groups. These shared parameters θk allow learning algo-
rithms to transfer information, while distinct mixture weights πj capture the particular
features of each group. Because the data within each group are always observed, an
explicit generative model for Nj is unnecessary.

To complete this hierarchical model, we must assign a distribution to the mixture
weights {πj}J

j=1. LDA assumes groups have no distinguishing features beyond the data
they contain, and are thus exchangeable. De Finetti’s Theorem then implies that these
mixture weights are independently sampled from some common prior distribution. For
computational simplicity, LDA chooses a conjugate Dirichlet prior:

πj ∼ Dir(α) j = 1, . . . , J (2.86)
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Figure 2.11. The latent Dirichlet allocation (LDA) model for sharing K clusters θk among J groups
of exchangeable data xj = (xj1, . . . , xjNj ). Left: LDA as a directed, hierarchical model. Each group’s
mixture weights πj ∼ Dir(α), while cluster parameters are assigned independent priors θk ∼ H(λ).
zji ∼ πj indicates the shared cluster that generates xji ∼ F

`
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´
. Right: When observations are one

of W discrete words, LDA can be seen as a probabilistically constrained factorization of the matrix
describing the bag of words composing each group, or document. The number K of latent clusters, or
topics, determines the factorization’s rank. The hyperparameters λ and α define Dirichlet priors for
the columns of the word and topic distribution matrices, respectively.

The resulting hierarchical model is illustrated in Fig. 2.11. The Dirichlet hyperparam-
eters α may be either chosen symmetrically (as in eq. (2.41)) to encode prior knowl-
edge [123], or learned from training data in an empirical Bayesian fashion [31]. Often,
robustness is improved by assigning conjugate priors θk ∼ H(λ) to the cluster param-
eters, as in standard mixture models (see eq. (2.81)). The resulting model is said to
be partially exchangeable [21], since observations are distinguished only by their associ-
ated group. As we demonstrate later, hierarchical graphical models provide a powerful
framework for describing dependencies within richly structured datasets.

LDA was originally used to analyze text corpora, by associating groups with docu-
ments and data xji with individual words. The exchangeability assumption treats each
document as a “bag of words,” incorrectly ignoring the true sentence structure. By
doing so, however, LDA leads to tractable algorithms which automatically learn topics
(clusters) from large, unlabeled document collections [31, 123, 211]. These topics are
alternatively known as aspects, and LDA as the generative aspect model [211].

For discrete data, LDA effectively determines a low–rank factorization of the matrix
containing the frequency of each word in each document (see Fig. 2.11). As discussed in
detail by Blei et. al. [31], LDA’s globally consistent generative model provides concep-
tual and practical advantages over earlier factorization methods such as latent semantic
analysis [140]. Importantly, however, LDA can also be generalized to continuous data
by associating clusters with appropriate exponential families F (θ). For example, in
later sections of this thesis we use Gaussian “topics” to model spatial data.
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As with finite mixture models, the number of clusters or topics K used by LDA is a
fixed constant. In practice, learning algorithms are sensitive to this parameter [31, 123],
and computationally expensive cross–validation schemes are often needed. Motivated by
this issue, Sec. 2.5.4 discusses the hierarchical Dirichlet process [289], a nonparametric
generalization of LDA which automatically infers the number of topics needed to explain
a given training corpus.

¥ 2.2.5 Learning and Inference in Graphical Models

In most applications of graphical models, inference and learning can be posed in terms
of a few canonical computational tasks. We divide the random variables composing the
graphical model into three sets: observations y, latent or hidden variables x, and pa-
rameters θ. While the form of this parameterization differs for directed and undirected
graphs, the objectives outlined below arise in both cases.

Inference Given Known Parameters

We begin by assuming the graph’s parameters θ are fixed to known, constant values
via some previous modeling procedure. The posterior distribution p(x | y, θ) then fully
captures available information about the hidden variables x. However, for most realistic
graphs the joint sample space X is far too large to characterize explicitly. For example,
given N binary hidden variables, |X | = 2N . We must thus develop efficient methods to
infer statistics summarizing this posterior density.

Given global observations y, the joint density p(x | y, θ) is often effectively summa-
rized by the following posterior marginal distributions:

p(xi | y, θ) =

∫

XV\i

p(x | y, θ) dxV\i i ∈ V (2.87)

Here, V \ i denotes all nodes except that corresponding to xi. The mean of this con-
ditional density is the Bayes’ least squares estimate [167, 229], while its mode is the
maximizer of the posterior marginals (MPM) [196] minimizing the expected number
of misclassified variables. In addition, the variance or entropy of p(xi | y, θ) measure
the posterior uncertainty in these estimates, which can be critical in practical applica-
tions [98, 231, 285, 330].

In some cases, hidden variables are instead inferred via a global MAP estimate:

x̂ = arg max
x

p(x | y, θ) (2.88)

While MAP estimates desirably optimize the joint posterior probability [108], they do
not directly provide confidence measures. Furthermore, when observations are noisy
or ambiguous, MAP estimation is often less robust than the MPM criterion [196]. For
these reasons, we focus primarily on the computation of posterior marginals.
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Learning with Hidden Variables

Criteria for learning in graphical models directly generalize those proposed for exponen-
tial families in Sec. 2.1.2. Let p(θ | λ) denote a prior distribution, with hyperparameters
λ, on the graphical model’s parameters. In the simplest case, we use the given obser-
vations y to determine a single MAP parameter estimate:

θ̂ = arg max
θ

p(θ | y, λ) (2.89)

= arg max
θ

p(θ | λ)

∫

X
p(x, y | θ) dx (2.90)

This optimization is complicated by a marginalization over hidden variables x, a dif-
ficulty which did not arise with fully observed exponential families (see eq. (2.23)).
Inference problems analogous to the posterior marginal computation of eq. (2.87) thus
also play a role when learning with hidden variables.

In many situations, the parameters themselves are of interest, and characterizations
of their posterior uncertainty are useful. Given some decomposition θ = {θa | a ∈ A}
of the joint parameter space, the posterior marginal distributions of these parameters,
and the corresponding hidden variables, equal

p(θa | y, λ) =

∫

X

∫

ΘA\a

p(x | y, θ) p(θ | y, λ) dθA\a dx a ∈ A (2.91)

p(xi | y, λ) =

∫

Θ

∫

XV\i

p(x | y, θ) p(θ | y, λ) dxV\i dθ i ∈ V (2.92)

Here, θa typically parameterizes an individual potential function in undirected graphs,
or the conditional distribution of a single variable in directed graphs. Integrating over
all parameters and hidden variables, we recover the observations’ marginal likelihood:

p(y | λ) =

∫

X

∫

Θ
p(x, y | θ) p(θ | λ) dθ dx (2.93)

The marginal likelihood is central to Bayesian approaches to model selection, where in-
tegration over parameters provides a form of Occam’s razor penalizing overly complex
models [154, 238]. It also arises in classification problems, for which posterior prob-
abilities are used to determine the most likely explanation of the given observations.
Furthermore, maximizing eq. (2.93) with respect to hyperparameters λ provides an
empirical Bayesian estimate of the prior distribution (see eq. (2.21)).

Computational Issues

Unfortunately, for many graphical models arising in practice, exact solution of these
learning and inference tasks is computationally intractable. Consider, for example, the
posterior marginal computation of eq. (2.87). Given N variables, each taking one of
K discrete states, this expression leads to a summation containing KN−1 terms, which
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for arbitrary graphs is NP hard [45]. Optimization of the MAP criterion (eq. (2.88))
is equally challenging [258]. For continuous X , we face a high–dimensional integration
which is usually also intractable. A notable exception occurs when all variables are
jointly Gaussian, so that linear algebraic connections allow exact inference in O(N3)
operations [63, 118]. However, even this computation may be extremely difficult for
large graphs [285, 330]. Typically, learning problems are no more tractable, since they
involve integrations like those arising in inference.

In the following sections, we discuss two general frameworks which provide ap-
proximate solutions to learning and inference tasks. We begin in Sec. 2.3 by outlining
variational methods which pose these computations as deterministic optimization prob-
lems. In Sec. 2.4, we then describe a complementary family of Monte Carlo methods
which explore posterior distributions via efficient numerical simulations.

¥ 2.3 Variational Methods and Message Passing Algorithms

In this section, we introduce a class of deterministic approximations to the problems
of learning and inference posed in Sec. 2.2.5. A variational method [98, 161, 251, 311]
begins by expressing a statistical inference task as the solution to a mathematical opti-
mization problem. By approximating or relaxing this objective function, one can derive
computationally tractable algorithms which bound or approximate the statistics of in-
terest. Often, these algorithms inherit the graphical model’s local structure, and can
be implemented via the calculation of messages passed between neighboring nodes.

We begin our development by considering the marginal log–likelihood of the ob-
served variables y, integrating over hidden states x and parameters θ (see eq. (2.93)).
Let q(x, θ) denote some approximation to the joint posterior density p(x, θ | y, λ). Via
Jensen’s inequality (see eq. (2.9)), any such approximation then provides a lower bound
on the marginal likelihood:

log p(y | λ) = log

∫

Θ

∫

X
p(x, y, θ | λ) dx dθ

= log

∫

Θ

∫

X
q(x, θ)

p(x, y, θ | λ)

q(x, θ)
dx dθ

≥
∫

Θ

∫

X
q(x, θ) log

p(x, y, θ | λ)

q(x, θ)
dx dθ (2.94)

= −D(q(x, θ) || p(x, θ | y, λ)) + log p(y | λ) (2.95)

The final equality follows by using Bayes’ rule to decompose p(x, y, θ | λ). Given some
family of approximating densities Q, the best lower bound is achieved by the distribution
minimizing the KL divergence from the true posterior:

q̂(x, θ) = arg min
q∈Q

D(q(x, θ) || p(x, θ | y, λ)) (2.96)

Of course, if Q is unrestricted the optimum is trivially q̂(x, θ) = p(x, θ | y, λ). Vari-
ational methods instead choose Q to be a simpler density representation for which
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computations are tractable.
The following sections explore two classes of variational methods. In Sec. 2.3.1,

we discuss mean field methods which use tractable families Q to derive a simplifying
decomposition of D(q || p). This representation is used to develop iterative methods
guaranteed to converge to a local optimum of eq. (2.96). Sec. 2.3.2 then describes
loopy belief propagation (BP), which uses properties of tree–structured graphical mod-
els to motivate intuitive approximations of Q and D(q || p). While loopy BP leads to
approximations, rather than bounds, on the marginal likelihood, it is often more accu-
rate in practice. Importantly, for either method the optimizing density q̂(x, θ) provides
estimates of the posterior marginal densities motivated in Sec. 2.2.5.

For simplicity, we focus on algorithms which infer conditional marginal densities
in pairwise Markov random fields. However, similar variational methods may also be
derived for directed [161] and factor [98, 324] graphs. In Sec. 2.3.3, we then show
how the expectation–maximization (EM) algorithm extends inference methods to learn
parameters from partially labeled data.

¥ 2.3.1 Mean Field Approximations

Given some fixed, undirected graph G = (V, E), consider a pairwise Markov random
field as introduced in Sec. 2.2.2:

p(x | y) =
1

Z

∏

(i,j)∈E

ψij(xi, xj)
∏

i∈V

ψi(xi, y) (2.97)

= exp

{
−

∑

(i,j)∈E

φij(xi, xj) −
∑

i∈V

φi(xi, y) − Φ

}
(2.98)

Here, Φ = log Z is the log partition function, and eq. (2.98) expresses the joint density
via the negative logarithms of the potential functions:

φij(xi, xj) , − log ψij(xi, xj) φi(xi, y) , − log ψi(xi, y) (2.99)

This representation is related to Boltzmann’s law from statistical mechanics [337], which
says that for a system in equilibrium at temperature T , a state x with energy φ(x) has
probability p(x) ∝ exp{−φ(x) /T}. For a pairwise MRF, the energy thus equals

φ(x) =
∑

(i,j)∈E

φij(xi, xj) +
∑

i∈V

φi(xi, y) (2.100)

We assume that the parameters θ defining the graph’s potentials have been fixed by
some previous modeling procedure, and do not denote them explicitly. Instead, we
focus on estimating the posterior marginal densities p(xi | y) for all nodes i ∈ V.

To develop the mean field method, we decompose the KL divergence (see eq. (2.96))
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between an approximate posterior q(x) and the target pairwise MRF as follows:

D(q || p) =

∫

X
q(x) log q(x) dx −

∫

X
q(x) log p(x | y) dx (2.101)

= −H(q) +

∫

X
φ(x) q(x) dx + Φ (2.102)

The first term of this decomposition is the negative entropy, while by analogy with
Boltzmann’s law the second term is known as the average energy. Excluding the log
partition function Φ, which is constant assuming fixed parameters, eq. (2.102) is some-
times called the Gibbs free energy [337]. Minimizing this free energy with respect to
q(x), we recover the true posterior of eq. (2.98). For an alternative interpretation of
this relationship, in which the negative entropy arises as the conjugate dual of the log
partition function, see [161, 311].

Naive Mean Field

Mean field methods are derived by choosing a restricted family of approximating den-
sities Q for which minimization of eq. (2.102) is tractable. By appropriately parame-
terizing Q, fixed points of this minimization also give estimates qi(xi) ≈ p(xi | y) of the
desired marginals. In the simplest case, the so–called naive mean field [98, 161, 311, 337]
approximation takes Q to be the set of fully factorized densities:

q(x) =
∏

i∈V

qi(xi) (2.103)

Recall that the joint entropy of a set of independent random variables equals the sum
of their individual entropies [49]. Inserting the factorization of eq. (2.103) into the free
energy of eq. (2.102) and simplifying, we then have

D(q || p) = −
∑

i∈V

H(qi) +
∑

i∈V

∫

Xi

φi(xi, y) qi(xi) dxi

· · · +
∑

(i,j)∈E

∫

Xi

∫

Xj

φij(xi, xj) qi(xi) qj(xj) dxj dxi + Φ (2.104)

Here, we have used eq. (2.100) to decompose the average energy according to the pair-
wise MRF’s graphical structure.

To minimize the mean field free energy of eq. (2.104), we construct a Lagrangian
constraining each approximating marginal distribution to integrate to one:

L(q, γ) = D(q || p) +
∑

i∈V

γi

(
1 −

∫

Xi

qi(xi) dxi

)
(2.105)

Differentiating L(q, γ) with respect to qi(xi) and simplifying, we find that the optimal
marginals are related by the following fixed point equations:

log qi(xi) = −φi(xi, y) −
∑

j∈Γ(i)

∫

Xj

φij(xi, xj) qj(xj) dxj + γ̄i i ∈ V (2.106)
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xi

y

xi

y

qi(xi) ∝ ψi(xi, y)
∏

j∈Γ(i)

mji(xi) mij(xj) ∝ exp

{
−

∫

Xi

φji(xj , xi) qi(xi) dxi

}

Figure 2.12. Message passing implementation of the naive mean field method. Left: Approximate
marginal densities are determined from the normalized product of the local observation potential with
messages sent from neighboring nodes. Right: Given an updated marginal estimate, new messages are
calculated and transmitted to all neighbors.

Here, γ̄i is a constant chosen to satisfy the marginalization constraint. Due to the
pairwise relationships in the free energy of eq. (2.104), the marginal qi(xi) at node i
depends directly on the corresponding marginals at neighboring nodes Γ(i). Thus, even
though Q is fully factorized, the corresponding mean field solution desirably propagates
information from local potentials throughout the graph.

To implement the mean field method, we must have a tractable representation
for the marginal densities qi(xi), and a corresponding algorithm for updating these
marginals. Consider the following decomposition of the mean field fixed point equation
(eq. (2.106)):

qi(xi) ∝ ψi(xi, y)
∏

j∈Γ(i)

mji(xi) i ∈ V (2.107)

mji(xi) ∝ exp

{
−

∫

Xj

φij(xi, xj) qj(xj) dxj

}
j ∈ Γ(i) (2.108)

We interpret mji(xi) as a message sent from j to its neighboring node i. As illustrated
in Fig. 2.12, mean field algorithms alternate between updating a local marginal estimate
(eq. (2.107)), and using this new marginal to calculate an updated message for each
neighbor (eq. (2.108)). If marginals are updated sequentially, the mean field algorithm
is a form of coordinate descent which converges to a local minimum of the free energy
(eq. (2.104)). Parallel updates are also possible, but do not guarantee convergence.

If Xi takes K discrete values, we can represent messages and marginals by K–
dimensional vectors. The integration of eq. (2.108) then becomes a summation, allowing
direct message computation in O(K2) operations. For hidden variables defined on



68 CHAPTER 2. NONPARAMETRIC AND GRAPHICAL MODELS

continuous spaces Xi, implementation of the mean field method is more complicated. In
jointly Gaussian random fields, the integral message updates can be rewritten in terms
of the posterior means [311], leading to an algorithm equivalent to the classic Gauss–
Seidel iteration for linear systems [63]. More generally, for directed or undirected graphs
where all potentials are defined by exponential families, the mean field marginals are
finitely parameterized by the corresponding sufficient statistics [110]. From eq. (2.108),
we see that messages then become exponentiated expectations of these statistics with
respect to neighboring nodes. This approach can be extended to infer approximate
marginal distributions for parameters θa (see eq. (2.91)) when all priors p(θa | λa) are
conjugate [110, 331]. The VIBES software package exploits this flexibility, along with
the local structure of message–passing updates, to automatically generate mean field
inference code for directed graphical models [331].

While exponential families are somewhat flexible, many applications involve more
complex, continuous potentials which lack sufficient statistics. In such cases, there
is no finite representation for the marginal densities qi(xi), and message updates are
typically intractable. Sometimes, however, the mean field algorithm can be reasonably
approximated by Monte Carlo methods which represent qi(xi) via a collection of random
samples [332]. We discuss these methods in more detail in Sec. 2.4.

Information Theoretic Interpretations

In information theory, the KL divergence D(p || q) arises as a measure of the asymptotic
inefficiency, or information loss [49], incurred by assuming that a stochastic process x
has distribution q(x) when its true distribution is p(x | y). From this perspective,
given an approximating family Q, it seems more appropriate to minimize D(p || q) over
q ∈ Q rather than the “backwards” divergence D(q || p) underlying mean field methods.
Indeed, for fully factorized Q as in eq. (2.103), D(p || q) has an intuitive form:

D(p || q) =

∫

X
p(x | y) log p(x | y) dx −

∫

X
p(x | y) log

∏

i∈V

qi(xi) dx

= −H(p) −
∑

i∈V

∫

Xi

p(xi | y) log qi(xi) dxi

=
∑

i∈V

H(pi) − H(p) +
∑

i∈V

D(pi || qi) (2.109)

The first two terms, which do not depend on q(x), capture the fundamental information
loss incurred by any approximation neglecting depencies among the hidden variables.
The last term is uniquely minimized by taking qi(xi) = p(xi | y), so that the true
posterior marginals are exactly recovered. Interestingly, mean field methods can also
be derived via a first–order Taylor series expansion of this divergence [166].

While the decomposition of eq. (2.109) shows that the marginals p(xi | y) provide
an appropriate summary of p(x | y), it does not provide a computational method for
determining these marginals. Conversely, while mean field methods do not generally
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(a) (b) (c) (d)

Figure 2.13. Tractable subgraphs underlying different variational methods for approximate inference.
(a) Original nearest–neighbor grid (observation nodes not shown). (b) Fully factored model employed
by the naive mean field method. (c) An embedded tree, as might be exploited by a structured mean
field method. (d) Another of this grid’s many embedded trees.

recover the true posterior marginals, minimization of D(q || p) leads to tractable al-
gorithms providing potentially useful approximations. Indeed, as we discuss in later
sections, this variational approach provides a flexible framework for developing richer
approximations with increased accuracy. See [161, 311] for an alternative motivation of
mean field methods based on conjugate duality.

Structured Mean Field

Results from the statistical physics literature guarantee that, for certain densely con-
nected models with sufficiently homogeneous potentials, the naive mean field approxi-
mation becomes exact as the number of variables N approaches infinity [337]. However,
for sparse, irregular graphs like those considered by this thesis, its marginal estimates
qi(xi) can be extremely overconfident, underestimating the uncertainty of the true pos-
terior p(xi | y). In addition, the mean field iteration of eqs. (2.107, 2.108) often gets
stuck in local optima which differ substantially from the true posterior [98, 320]. Geo-
metrically, these local optima arise because the set of pairwise marginals achievable via
fully factorized densities is not convex [311].

Motivated by these issues, researchers have developed a variety of variational meth-
ods which extend and improve the naive mean field approximation [98, 161, 251, 311]. In
particular, fully factorized approximations effectively remove all of the target graphical
model’s edges. However, one can also consider structured mean field methods based on
approximating families which directly capture more of the original graph’s structure (see
Fig. 2.13). Optimization of these approximations is possible assuming exact inference
in the chosen subgraphs is tractable [111, 252, 327, 335]. As we show in the following
section, Markov chains and trees allow fast, exact recursive inference algorithms which
form the basis for a variety of higher–order variational methods.

¥ 2.3.2 Belief Propagation

As discussed in Sec. 2.2.5, direct solution of learning and inference problems arising in
graphical models is typically intractable. Sometimes, however, global inference tasks
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xi

xk

xj

xl

xj\i

xk\i

xl\i

Figure 2.14. For a tree–structured graph, each node i partitions the graph into |Γ(i)| disjoint subtrees.
Conditioned on xi, the variables x

j\i
in these subtrees are independent.

can be efficiently decomposed into a set of simpler, local computations. In particular,
for tree–structured graphical models a generalization of dynamic programming known
as belief propagation (BP) [178, 231, 255] recursively computes exact posterior marginals
in linear time. In the following sections, we provide a brief derivation of BP, and discuss
issues arising in its implementation. We then present a variational interpretation of BP
which justifies extensions to graphs with cycles.

Message Passing in Trees

Consider a pairwise MRF, parameterized as in Sec. 2.3.1, whose underlying graph
G = (V, E) is tree–structured. As shown in Fig. 2.14, any node i ∈ V divides such
a tree into |Γ(i)| disjoint subsets:

j \ i , {j} ∪ {k ∈ V | no path from k → j intersects i} (2.110)

By the Markov properties of G, the variables x
j\i

in these sub–trees are conditionally in-

dependent given xi. The BP algorithm exploits this structure to recursively decompose
the computation of p(xi | y) into a series of simpler, local calculations.

From the Hammersley–Clifford Theorem, Markov properties are expressed through
the algebraic structure of the pairwise MRF’s factorization into clique potentials. As
illustrated in Fig. 2.15, tree–structured graphs allow multi–dimensional integrals (or
summations) to be decomposed into a series of simpler, one–dimensional integrals. As
in dynamic programming [24, 90, 303], the overall integral can then be computed via a
recursion involving messages sent between neighboring nodes. This decomposition is an
instance of the same distributive law underlying a variety of other algorithms [4, 50, 255],
including the fast Fourier transform. Critically, because messages are shared among sim-
ilar decompositions associated with different nodes, BP efficiently and simultaneously
computes the desired marginals for all nodes in the graph.
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x2x1

x3

x4

p(x1) ∝
∫∫∫

ψ1(x1)ψ12(x1, x2)ψ2(x2)ψ23(x2, x3)ψ3(x3)ψ24(x2, x4)ψ4(x4) dx4 dx3 dx2

∝ ψ1(x1)

∫∫∫
ψ12(x1, x2)ψ2(x2)ψ23(x2, x3)ψ3(x3)ψ24(x2, x4)ψ4(x4) dx4 dx3 dx2

∝ ψ1(x1)

∫
ψ12(x1, x2)ψ2(x2)

[∫∫
ψ23(x2, x3)ψ3(x3)ψ24(x2, x4)ψ4(x4) dx4 dx3

]
dx2

∝ ψ1(x1)

∫
ψ12(x1, x2)ψ2(x2)

[∫
ψ23(x2, x3)ψ3(x3) dx3

]

︸ ︷︷ ︸
m32(x2)

·
[∫

ψ24(x2, x4)ψ4(x4) dx4

]

︸ ︷︷ ︸
m42(x2)

dx2

︸ ︷︷ ︸
m21(x1) ∝

∫
ψ12(x1, x2)ψ2(x2)m32(x2)m42(x2) dx2

Figure 2.15. Example derivation of the BP message passing recursion through repeated application
of the distributive law. Because the joint distribution p(x) factorizes as a product of pairwise clique
potentials, the joint integral can be decomposed via messages mji(xi) sent between neighboring nodes.

To derive the BP algorithm, we begin by considering the clique potentials corre-
sponding to particular subsets of the full graph:

ΨA(xA) ,
∏

(i,j)∈E(A)

ψij(xi, xj)
∏

i∈A

ψi(xi, y) A ⊂ V (2.111)

Here, E(A) , {(i, j) ∈ E | i, j ∈ A} are the edges contained in the node–induced sub-
graph [50] corresponding to A. Using the partitions illustrated in Fig. 2.14, we can then
write the marginal distribution of any node as follows:

p(xi | y) ∝
∫

XV\i

ψi(xi, y)
∏

j∈Γ(i)

ψij(xi, xj) Ψ
j\i

(x
j\i

) dxV\i (2.112)

∝ ψi(xi, y)
∏

j∈Γ(i)

∫

X
j\i

ψij(xi, xj)Ψ
j\i

(x
j\i

) dx
j\i

(2.113)
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To verify eq. (2.112), note that it simply regroups the pairwise MRF’s potentials ac-
cording to Fig. 2.14. Because the variables in the subgraphs separated by node i share
no potentials, the joint integral then decomposes accordingly. Interpreting the integrals
in eq. (2.113) as messages mji(xi) sent to node i from each of its neighbors, we have

p(xi | y) ∝ ψi(xi, y)
∏

j∈Γ(i)

mji(xi) (2.114)

The message mji(xi) is a function providing the value of the corresponding integral for
each possible xi ∈ Xi. Note that in a graph with cycles, node i would not necessarily
disjointly partition the potentials, so the decomposition of eqs. (2.112, 2.113) is invalid.

In some applications, the joint distributions p(xi, xj | y) of pairs of nodes are also
of interest [324]. In tree–structured graphs, neighboring nodes (i, j) ∈ E partition the
global set of clique potentials as follows:

p(x | y) ∝ ψij(xi, xj) ψi(xi, y) ψj(xj , y)
∏

`∈Γ(i)\j

Ψ
`\i

(x
`\i

)
∏

k∈Γ(j)\i

Ψ
k\j

(x
k\j

) (2.115)

The corresponding subgraphs are illustrated in Fig. 2.16. Applying this decomposition
as in eq. (2.112), and integrating over all variables except xi and xj , we then have

p(xi, xj | y) ∝ ψij(xi, xj)ψi(xi, y)ψj(xj , y)
∏

`∈Γ(i)\j

m`i(xi)
∏

k∈Γ(j)\i

mkj(xj) (2.116)

The messages decomposing this pairwise marginal density are defined identically to
those used in eq. (2.114) to compute single–node marginals.

As defined in eq. (2.113), the messages may still be complex functions of large
groups of variables. To derive an efficient recursive decomposition, we consider the
marginalization constraint relating the single–node and pairwise marginal distributions:

p(xi | y) =

∫

Xj

p(xi, xj | y) dxj (2.117)

ψi(xi, y)
∏

`∈Γ(i)

m`i(xi) ∝ ψi(xi, y)
∏

`∈Γ(i)\j

m`i(xi) (2.118)

· · · ×
∫

Xj

ψij(xi, xj) ψj(xj , y)
∏

k∈Γ(j)\i

mkj(xj) dxj

Note that all but one of the terms on the left hand side of eq. (2.118) have identical
functions of xi on the right hand side. Cancelling these terms, as illustrated graphically
in Fig. 2.16 (see [339]), the marginalization constraint is always satisfied when the
remaining message mji(xi) is defined as follows:

mji(xi) ∝
∫

Xj

ψij(xi, xj) ψj(xj , y)
∏

k∈Γ(j)\i

mkj(xj) dxj (2.119)
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This recursion expresses one outgoing message from node j in terms of the other
(|Γ(j)| − 1) incoming messages. At the leaves of the tree, eq. (2.119) and our initial
message definition (eq. (2.113)) coincide:

mji(xi) ∝
∫

Xj

ψij(xi, xj)ψj(xj , y) dxj Γ(j) = {i} (2.120)

Thus, by recursively computing the messages along every edge according to eq. (2.119),
we may then easily find any single–node (eq. (2.114)) or pairwise (eq. (2.116)) marginal
of interest. For more formal derivations of this algorithm, see [4, 255].

Fig. 2.16 summarizes the BP message update recursion, and the corresponding mes-
sage products which provide marginal densities. These posterior marginals are some-
times called beliefs, by analogy with expert systems developed in the artificial intelli-
gence community [50, 178, 231]. Anticipating later extensions of BP which only provide
approximate posterior marginals, we denote the beliefs for individual and pairs of nodes
by qi(xi) and qij(xi, xj), respectively. This form of the BP algorithm is due to Shafer
and Shenoy [255], who emphasized the central role of factorization in recursive infer-
ence. Several other variants of BP have been proposed [50, 158, 306], including versions
adapted to directed Bayesian networks [178, 231] and factor graphs [175, 324].

To implement the BP algorithm, a schedule by which the messages are updated
must be selected. In tree–structured graphs, an appropriate ordering of these updates
requires each message to be computed only once, so that all N marginals may be
determined in O(N) operations. One possible efficient schedule chooses some node as
the root of the tree. This induces a partial ordering of the nodes in scale according to
their distance from the root (see Fig. 2.6). Messages are then computed in two stages:
an upward sweep proceeding from leaves to the root, followed by a downward sweep
propagating information from the root throughout the graph [34, 41, 330]. Alternatively,
an efficient decentralized schedule begins by passing outward messages from all leaf
nodes. Internal message mji(xi) is then computed once node j has received messages
from all (|Γ(j)| − 1) of its other neighbors [175].

One can also consider a parallel form of the BP algorithm, in which every node
recomputes all outgoing messages at each iteration, based on messages received from
its neighbors in the previous iteration [231]. After T iterations, local marginal estimates
will then optimally incorporate information from all nodes within distance T [4]. Con-
vergence to the optimal posterior marginals occurs once the number of iterations equals
the tree’s diameter (at most (N−1)). While parallel BP updates are typically inefficient
on a serial computer, they are useful in distributed implementations [100, 245].

Representing and Updating Beliefs

As with the mean field algorithm, implementations of BP require a tractable represen-
tation of the beliefs, and corresponding computational methods for the message updates
of eq. (2.119). In the simplest case, where each variable xi takes one of K discrete val-
ues (|Xi| = K), messages and marginals can be represented by K–dimensional vectors.
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∏
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∏
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∫
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∏
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Figure 2.16. Message passing recursions underlying the BP algorithm. Top: Approximate marginal
densities are determined from the normalized product of the local observation potential with messages
sent from neighboring nodes. Middle: Pairwise marginal densities are derived from a similar message
product. Bottom: A new outgoing message (red) is computed from all other incoming messages (blue).



Sec. 2.3. Variational Methods and Message Passing Algorithms 75

The message update integral then becomes a matrix–vector product, which in general
requires O(K2) operations:

mji(xi) ∝
∑

xj∈Xj

ψij(xi, xj)ψj(xj , y)
∏

k∈Γ(j)\i

mkj(xj) (2.121)

For an N node tree, BP can then compute all marginals in O(NK2) operations, a dra-
matic savings versus the O(KN ) cost of brute–force summation. When the pairwise
potentials ψij(xi, xj) are sufficiently regular, techniques such as FFTs can further reduce
costs to O(K log K), or O(K) with additional approximations [80]. By analogy with
the form of eq. (2.121), BP is sometimes called the sum–product algorithm [175]. Spe-
cializing discrete BP to temporal HMMs (see Fig. 2.7), we recover the forward–backward
algorithm, which is widely used for speech processing [235]. More generally, recursions
equivalent to BP are often applied to multiscale discrete–state quadtree models arising
in image processing [34, 330].

Inference in HMMs with continuous hidden variables has been extensively studied
in the context of state space representations for dynamical systems [8, 164]. For linear
systems with Gaussian dynamics and observation noise, the posterior distribution of
the states is jointly Gaussian, and marginals are thus determined by their mean and
covariance. In such models, BP is equivalent to fixed–interval smoothing algorithms
which combine the Kalman filter with a complementary reverse–time recursion [8, 163,
164, 249]. These algorithms are readily generalized to any tree–structured graphical
model with Gaussian potentials [41, 330]. In undirected Gaussian MRFs, BP messages
are most easily updated in information form, via inverse covariance matrices [276, 321].

In contrast to the Gaussian case, continuous state space models containing non–
linear or non–Gaussian interactions typically lead to message updates which lack a
closed analytic form [8, 153]. Even in cases where all potentials are drawn from expo-
nential families, the corresponding posterior densities may not have finite–dimensional
sufficient statistics [326]. These difficulties have motivated a wide range of methods
which approximate the true posterior by a tractable analytic form. For example, the ex-
tended Kalman filter fits a Gaussian posterior via a gradient–based linearization [8, 153],
while the unscented Kalman filter uses a more accurate quadrature method [162]. More
generally, given any exponential family, expectation propagation (EP) [135, 213] uses
the moment matching conditions of Sec. 2.1.1 to approximate the beliefs produced by
each message update. Note, however, that determining the sufficient statistics for such
projections can itself be a challenging problem [344].

For many graphical models, the true posterior marginals are multimodal, or ex-
hibit other features poorly approximated by standard exponential families. In some
cases, a fixed K–point discretization leads to an effective histogram approximation of
the true continuous beliefs [11, 80, 95, 169]. However, as K must in general grow ex-
ponentially with the dimension of Xi, computation of the discrete messages underlying
this approach can be extremely demanding. This has motivated approaches which use
online message computations to dynamically discretize the belief space. In some cases,
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deterministic rules are used to prune discretization grids [47, 48] or Gaussian mixture
approximations [5, 94, 267]. Alternatively, Monte Carlo methods can be used to itera-
tively improve stochastic approximations to the true beliefs [9, 197, 224]. In particular,
Chap. 3 describes and extends a family of particle filters [11, 70] which approximate
messages and beliefs by a set of weighted samples.

Message Passing in Graphs with Cycles

Our earlier derivation of the BP algorithm assumed a tree–structured graph. The
junction tree algorithm extends BP to allow exact inference in arbitrary graphs [178,
255]. Let G be an undirected graph (directed graphs are first moralized as in Fig. 2.4(c)).
In the first of three stages, G is triangulated by adding edges so that all cycles of length
four or greater contain a chord. Then, a tree is formed from the maximal cliques
of the triangulated graph. Finally, a variant of BP performs exact inference on the
resulting junction tree (for more details, see [4, 50, 158, 177]). The triangulation step
ensures that any variables shared by two cliques are also members of other cliques along
their connecting path. This running intersection property must be satisfied for local
junction tree computations to produce globally consistent estimates. For many graphs,
however, triangulation greatly increases the size of the resulting cliques. In such cases,
the number of states associated with these cliques grows exponentially, and inference
in the junction tree can become intractable [45].

For graphs in which exact inference is infeasible, we can still use the BP algorithm to
develop improved variational methods. As mentioned in Sec. 2.3.1, one approach uses
embedded trees (as in Fig. 2.13) to develop structured mean field bounds with increased
accuracy [111, 252, 327]. In this thesis, we focus on an alternative method known as
loopy belief propagation [231]. As summarized in Fig. 2.16, the BP algorithm proceeds
entirely via a series of local message updates. Given a graph with cycles, loopy BP
iterates a parallel form of these message updates. Remarkably, in many applications
this seemingly heuristic method converges to beliefs which very closely approximate the
true posterior marginals [101, 219].

The traditional dynamic programming derivation of BP provides no justification for
loopy BP, other than the vague intuition that it should work well for graphs whose cycles
are “long enough.” In the following section, we provide a variational interpretation
which places loopy BP on firmer conceptual ground. We then briefly survey known
theoretical results and extensions.

Loopy BP and the Bethe Free Energy

Unsurprisingly, variational analyses of loopy BP are closely related to the Markov struc-
ture of tree–structured graphical models. The following proposition provides a local
factorization which is valid for any tree–structured joint distribution, and derives a
corresponding entropy decomposition.
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Proposition 2.3.1. Let G = (V, E) be a tree–structured undirected graph. Any joint
distribution p(x) which is Markov with respect to G factorizes according to marginal
distributions defined on the graph’s nodes and edges:

p(x) =
∏

(i,j)∈E

pij(xi, xj)

pi(xi)pj(xj)

∏

i∈V

pi(xi) (2.122)

The joint entropy H(p) then decomposes according to the graphical structure:

H(p) =
∑

i∈V

H(pi) −
∑

(i,j)∈E

I(pij) (2.123)

Proof. The factorization of eq. (2.122) is a special case of the junction tree decomposi-
tion, and can be formally verified using an induction argument [50, 177, 178]. In Markov
chains, for example, it is easily derived from the standard representation via one–step
transition probabilities. The entropy decomposition of eq. (2.123) then follows directly
from the definitions of entropy (eq. (2.7)) and mutual information (eq. (2.11)).

Interestingly, eq. (2.122) shows that the marginal distributions of tree–structured graphs
can be inferred via a reparameterization operation which transforms arbitrary clique
potentials (as in eq. (2.97)) to this particular canonical form [306].

Given any tree–structured undirected graph G = (V, E), consider a pairwise MRF
p(x | y) parameterized as in eq. (2.98). Using the entropy decomposition of eq. (2.123),
the KL divergence D(q || p) from any tree–structured approximation q(x) equals

D(q || p) = −
∑

i∈V

H(qi) +
∑

(i,j)∈E

I(qij) +
∑

i∈V

∫

Xi

φi(xi, y) qi(xi) dxi

· · · +
∑

(i,j)∈E

∫

Xi

∫

Xj

φij(xi, xj) qij(xi, xj) dxj dxi + Φ (2.124)

This divergence depends solely on the pairwise marginals qij(xi, xj), not on other non–
local aspects of q(x). To arrive at the loopy BP algorithm, we assume that the KL di-
vergence of eq. (2.124) is approximately correct even for graphs with cycles. The beliefs
qi(xi) and qij(xi, xj) are then pseudo–marginals, which differ from the true marginals
of p(x | y). In statistical physics, this approximation is known as the Bethe free en-
ergy [337, 340]. Note that for pairwise MRFs, the average energy term can be exactly
written in terms of pairwise marginals. The approximation thus involves incorrectly
applying the tree–based entropy of eq. (2.123) to cyclic graphs.

As with our earlier mean field derivation, loopy BP is derived by using Lagrangian
methods to minimize the Bethe free energy of eq. (2.124). First, each edge (i, j) ∈ E
is associated with a set of Lagrange multipliers constraining qij(xi, xj) to consistently
marginalize to qi(xi):

qi(xi) =

∫

Xj

qij(xi, xj) dxj for all xi ∈ Xi (2.125)
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Adding additional normalization constraints (as in eq. (2.105)) and taking derivatives,
we recover a set of fixed point equations relating Lagrange multipliers and beliefs. Fi-
nally, as derived in detail by [340], the BP equations of Fig. 2.16 are exactly recovered by
identifying messages as particular monotonic transformations of Lagrange multipliers.

The correspondence between loopy BP and the Bethe free energy has several im-
portant implications. First, the derivation sketched above shows that loopy BP fixed
points correspond to stationary points of the Bethe free energy.4 A more refined analy-
sis shows that stable BP fixed points must be local minima [132]. Furthermore, because
the Bethe free energy is bounded below, every graphical model has at least one BP
fixed point [338, 340].

In general, the Bethe free energy is not convex, so there may be multiple BP so-
lutions, and convergence is not guaranteed. However, for single cycles [133, 319] or
graphs with sufficiently weak potentials [133, 143, 286], BP is guaranteed to have a sin-
gle, unique global fixed point. In models where loopy BP exhibits instability, message
schedules which pass messages along embedded chains or trees (as in Fig. 2.13), or step–
size rules which damp message updates, can improve convergence [306]. Convergence
dynamics are sometimes analyzed via the computation tree corresponding to the chosen
message schedule [143, 155, 286, 319, 321]. Alternatively, double–loop algorithms have
been developed which directly minimize the Bethe free energy at greater computational
cost [134, 290, 341].

This derivation of loopy BP approximates the variational objective of eq. (2.96) in
two ways. First, as mentioned earlier, the Bethe free energy (eq. (2.124)) uses an entropy
approximation which is incorrect on graphs with cycles, and thus does not strictly
bound the marginal likelihood. Second, the marginalization constraints of eq. (2.125)
are insufficient to ensure that the estimated pseudo–marginals {qij(xi, xj) | (i, j) ∈ E}
correspond to some valid global q(x). For example, the constraint that every joint
distribution has a positive definite covariance matrix is in general not implied by these
marginalization conditions [311, 312]. Nevertheless, in many practical applications loopy
BP produces accurate, effective belief estimates [101, 219, 320].

Theoretical Guarantees and Extensions

In the artificial intelligence community, the loopy BP algorithm was originally sug-
gested by Pearl [231] (see [219] for a historical discussion). Then in 1993, turbo codes
were independently discovered to achieve outstanding error–correction performance by
coupling two randomly interleaved convolutional codes with an iterative decoder [23].
In the following years, the equivalence of this iterative approach and loopy BP was
recognized [101, 201]. Graphical representations were then used to extend turbo (or
sum–product) decoding to many other code families [175], rediscovering a class of low
density parity check (LDPC) codes proposed in Gallager’s 1960 doctoral thesis [102].
Subsequent refinements have led to long block–length codes which practically achieve

4Note that subtleties can arise with free energy analyses in graphical models containing hard con-
straints, for which potentials are not strictly positive [340].
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the capacity of memoryless channels [22, 42]. This performance is theoretically un-
derstood through results which show that loopy BP becomes exact as cycles become
arbitrarily long, and a corresponding density evolution algorithm which computes ca-
pacity thresholds for random code ensembles [244].

Inspired by its successes in iterative decoding, researchers have successfully applied
loopy BP to a wide range of challenging learning and inference tasks [48, 95, 99, 219,
245, 283, 336]. Concurrently, the variational interpretation provided by the Bethe free
energy has led to several important theoretical results and extensions. In particular,
BP can be seen as a reparameterization algorithm which attempts to transform the
given clique potentials into the canonical form of Prop. 2.3.1 [306]. Except in certain
degenerate cases, this is impossible for graphs with cycles, and loopy BP will thus not
provide exact posterior marginals. Interestingly, however, any loopy BP fixed point
is consistent with respect to every tree embedded in the original graph (for examples,
see Fig. 2.13). This analysis can be extended to bound the error in BP’s approximate
marginals [305, 306]. These results are stronger than those available for the mean field
method, and support the empirical observation that loopy BP is typically more accurate
and less prone to local optima [320].

Additional performance guarantees are available for Gaussian MRFs. If Gaussian
BP converges, several different techniques can be used to guarantee exactness of the pos-
terior means [155, 250, 306, 321]. However, the estimated variances are incorrect because
correlations due to the graph’s cycles are neglected. Intuitively, when all potentials
are positively correlated or attractive, these variance estimates are over–confident [321].
Furthermore, convergence is guaranteed for a wide class of walk–summable models [155],
or equivalently any graph whose pairwise potentials are normalizable.

More generally, variational interpretations of BP have led to the development of sev-
eral extensions with improved accuracy. For example, the Bethe entropy of eq. (2.124)
can be seen as the first terms of an expansion based on the Möbius inversion for-
mula [125, 248]. Higher order terms directly account for relationships among larger
groups of variables. Exploiting this, a region graph framework has been proposed which
leads to better entropy approximations, and a corresponding family of generalized be-
lief propagation algorithms [202, 338, 339, 340]. This approach generalizes the Kikuchi
free energies [337] developed in the statistical physics community. The expectation
propagation algorithm [135, 212, 213] provides a closely related method of incorporating
higher–order dependencies (see [305] and [323] for unifying comparisons). In addition,
a family of robust reweighted belief propagation algorithms have been derived from
convex upper bounds on the log partition function [307, 310, 328, 329].

Finally, we note that the distributive structure underlying the BP algorithm can be
generalized to any commutative semiring [4, 50, 255, 303]. In particular, a max–product
variant of BP generalizes the Viterbi algorithm [90, 235] to efficiently compute optimal
MAP estimates in tree–structured graphs [175, 231]. For graphs with cycles, there are
some guarantees on max–product’s accuracy [308, 322], and a reweighted extension can
sometimes assure an optimal MAP solution [172, 309]. See [311] for an introduction
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emphasizing variational interpretations of these methods.

¥ 2.3.3 The Expectation Maximization Algorithm

In this section, we consider the MAP parameter estimation criterion motivated in
Sec. 2.2.5. Given a model with parameters θ, and prior distribution p(θ | λ), we seek

θ̂ = arg max
θ

p(θ | y, λ) = arg max
θ

p(θ | λ)

∫

X
p(x, y | θ) dx (2.126)

As before, y are observations and x are latent variables. The Expectation Maximiza-
tion (EM) algorithm [65] is an iterative parameter estimation scheme which tractably
handles hidden or missing data x. We derive EM using the previously introduced varia-
tional framework, and discuss its application to learning in graphical models. For other
introductions to the EM algorithm, see [98, 107, 161, 225].

As with other variational methods, the EM algorithm uses a distribution q(x) over
hidden variables to bound an otherwise intractable integral. Using Bayes’ rule to expand
the posterior distribution of eq. (2.126), we have

log p(θ | y, λ) = log

∫

X
p(x, y | θ) dx + log p(θ | λ) − log p(y | λ) (2.127)

≥
∫

X
q(x) log

p(x, y | θ)

q(x)
dx + log p(θ | λ) − log p(y | λ) (2.128)

Here, we have applied Jensen’s inequality as in our earlier variational bound on the
marginal likelihood (eq. (2.94)). Regrouping terms and neglecting the final normal-
ization constant, which does not depend on θ, we arrive at the following functional:

L(q, θ) = H(q) +

∫

X
q(x) log p(x, y | θ) dx + log p(θ | λ) (2.129)

Comparing to eq. (2.102), we see that L(q, θ) equals a negative free energy [225] plus
another term incorporating prior knowledge about the unknown parameters [107].

As in [225, 227], we derive the EM algorithm as a coordinate ascent iteration on
L(q, θ). In the expectation or E–step, the parameters θ are fixed and the optimal
variational distribution q(x) is determined. Then in the maximization or M–step, the
lower bound defined by q(x) is maximized with respect to the parameters:

q(t) = arg max
q

L(q, θ(t−1)) (2.130)

θ(t) = arg max
θ

L(q(t), θ) (2.131)

It can be shown that the posterior probability of eq. (2.126) increases monotonically with
each EM iteration, converging to some local maximum [65, 107, 225]. In the following
sections, we discuss the implementation of these steps in greater detail.



Sec. 2.3. Variational Methods and Message Passing Algorithms 81

Expectation Step

Fixing the parameters to some value θ(t−1), provided either by the previous M–step or
an initialization θ(0), the E–step objective of eq. (2.130) becomes

q(t) = arg max
q

[
H(q) +

∫

X
q(x) log p(x, y | θ(t−1)) dx

]
(2.132)

Note the similarity of this equation to the variational objective underlying the mean
field method (eq. (2.102)). Adding a Lagrange multiplier ensuring that q(x) is properly
normalized (as in eq. (2.105)) and taking derivatives, it is easily shown that

q(t)(x) = p(x | y, θ(t−1)) (2.133)

See [225] for a detailed derivation. We see that the E–step simply infers the posterior
distribution of the hidden variables given the current parameters.

If p(x, y | θ) defines an exponential family, the expected values of that family’s statis-
tics are sufficient for the subsequent M–step. In graphical models, the E–step thus
reduces to the problem of computing the posterior marginal distribution of each hidden
variable (see Sec. 2.2.5). The variational derivation of the EM algorithm also justifies
incremental E–steps, in which the expectations of only some variables are updated at
each iteration [225]. In graphs where exact inference is intractable, mean field meth-
ods are commonly used to further bound the log–likelihood [161, 311, 331]. It is also
tempting to use higher order variational methods, such as loopy BP, as approximate
E–steps [98, 136]. In such cases, however, L(q, θ) no longer strictly bounds the true
posterior probability [311], and the resulting iteration may be unstable or inaccurate.

Maximization Step

Given the posterior distribution q(t)(x) determined in the previous E–step, the M–step
objective of eq. (2.131) equals

θ(t) = arg max
θ

[
log p(θ | λ) +

∫

X
q(t)(x) log p(x, y | θ) dx

]
(2.134)

Up to an additive constant independent of θ, the likelihood term in eq. (2.134) equals
−D

(
q(t) || pθ

)
. If θ parameterizes an exponential family and the prior distribution is un-

informative, Prop. 2.1.2 then shows that θ(t) should be chosen to match the appropriate
sufficient statistics of q(t). Similarly, conjugate priors p(θ | λ) are easily handled by ap-
propriately biasing these statistics (see Prop. 2.1.4). More generally, partial M–steps can
be used which increase, but do not maximize, the current likelihood bound [107, 225].

In directed Bayesian networks, the M–step can often be computed in closed form [37,
50, 98, 128]. Consider the following directed factorization:

p(x | θ) =
∏

i∈V

p
(
xi | xΓ(i), θi

)
(2.135)
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Here, θi parameterizes the transition distribution for the ith node, and we have not
explicitly indicated which nodes correspond to observations y. If each transition is
assigned a meta independent [50, 59] prior p(θi | λi), the objective of eq. (2.134) equals

θ(t) = arg max
θ

∑

i∈V

∫∫
q(t)(xi, xΓ(i)) log p

(
xi | xΓ(i), θi

)
dxi dxΓ(i) + log p(θi | λi)

(2.136)
The parameters associated with different nodes are thus decoupled, and can be estimated
independently. This optimization is similarly tractable for many models in which pa-
rameters are shared among multiple transition densities [235].

In undirected graphical models, parameter estimation is more challenging. Consider
a factor graph parameterized as in eq. (2.68), and assume for simplicity that the refer-
ence measure ν(x) = 1. Then, if each clique potential is assigned a meta independent
prior p(θf | λf ), the M–step objective equals

θ(t) = arg max
θ

∑

f∈F




∑

a∈Af

θfa

∫
q(t)(xf )φfa(xf ) dxf + log p(θf | λf )


 − Φ(θ) (2.137)

In contrast with eq. (2.136), the log partition function Φ(θ) induces non–local depen-
dencies among the parameters. When the corresponding graph is decomposable or
triangulated, junction tree representations can be used to efficiently estimate parame-
ters [59, 177]. Otherwise, computationally demanding numerical methods are required,
often implemented via one of several iterative scaling algorithms [53, 56, 62, 177, 227,
268, 290]. A recently proposed family of convex upper bounds on the log partition
function can be used for approximate undirected parameter estimation [307, 310].

¥ 2.4 Monte Carlo Methods

By using random samples to simulate probabilistic models, Monte Carlo methods [9,
107, 192] provide complementary solutions to the learning and inference tasks described
in Sec. 2.2.5. In contrast with variational approaches, they are guaranteed to give
arbitrarily precise estimates with sufficient computation. In practice, however, care
must be taken to design efficient algorithms so that reliable, accurate estimates can be
obtained at a tractable computational cost.

Let p(x) denote some target density with sample space X . Many inference tasks,
including the calculation of marginal densities and sufficient statistics, can be expressed
as the expected value Ep[f(x)] of an appropriately chosen function [9, 192]. Suppose
that p(x) is difficult to analyze explicitly, but that L independent samples {x(`)}L

`=1 are



Sec. 2.4. Monte Carlo Methods 83

available. The desired statistic can then be approximated as follows:

Ep[f(x)] =

∫

X
f(x)p(x) dx (2.138)

≈ 1

L

L∑

`=1

f(x(`)) = Ep̃[f(x)] (2.139)

Here, p̃(x) is the empirical density (see eq. (2.13)) corresponding to the L samples, as
illustrated in Fig. 2.17(a). This estimate is unbiased, and converges to Ep[f(x)] almost
surely as L → ∞. Furthermore, its error is asymptotically Gaussian, with variance
determined by Ep

[
f2(x)

]
rather than the dimensionality of the sample space [9].

In graphical models, exact samples can be drawn from the posterior distribution
p(x | y) using a variant of the junction tree algorithm (see Sec. 2.3.2). First, some clique
is chosen as the tree’s root, and a sample is drawn from its corresponding marginal.
The values of neighboring cliques are then recursively sampled from the appropriate
conditional densities [50]. For many graphs, however, the junction tree’s cliques are too
large, and exact sampling is intractable. The following sections describe several Monte
Carlo methods which allow approximate samples to be drawn more efficiently.

¥ 2.4.1 Importance Sampling

Importance sampling provides an alternative to direct Monte Carlo approximation in
cases where sampling from p(x) is difficult. We assume that it is possible to evaluate
p(x) = p̄(x)/Z up to some normalization constant Z. Let q(x) denote a proposal
distribution which is absolutely continuous with respect to p(x), so that p(x̄) = 0
whenever q(x̄) = 0. The expectation of eq. (2.138) can then be rewritten as follows:

Ep[f(x)] =

∫
X f(x)w(x)q(x) dx∫

X w(x)q(x) dx
w(x) =

p̄(x)

q(x)
(2.140)

The denominator of eq. (2.140) implicitly defines the unknown normalization constant
via the weight function w(x). Given L independent samples {x(`)}L

`=1 from the proposal
density q(x), we approximate this expectation as

Ep[f(x)] ≈
L∑

`=1

w(`)f(x(`)) w(`) ,
w(x(`))

∑L
m=1 w(x(m))

(2.141)

Importance sampling thus estimates the target expectation via a collection of weighted
samples {(x(`), w(`))}L

`=1 from the proposal density q(x). Under mild assumptions, this
estimate is asymptotically consistent [9], and its variance is smallest when the pro-
posal density q(x) ∝ |f(x)|p(x). Fig. 2.17 illustrates weighted samples drawn from two
different importance approximations to a bimodal target distribution.

The practical effectiveness of importance sampling critically depends on the chosen
importance density. When q(x) assigns low probability to likely regions of the tar-
get sample space, importance estimates can be extremely inaccurate. For example,
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Figure 2.17. Monte Carlo estimates based on 30 samples (arrows) from one–dimensional proposal
distributions (left column), and corresponding kernel density estimates (right column) constructed via
likelihood cross–validation. (a) Target density (solid), and unweighted direct samples. (b) Kernel
density (thick blue line) estimated from Gaussian kernels (thin black lines). (c) A mixture proposal
distribution (solid) closely matched to the target density (dashed), and importance weighted samples.
(d) Kernel density estimated from weighted Gaussian kernels. (e) A Gaussian proposal distribution
(solid) with mean and variance matching the target density (dashed), and weighted samples. (f) Kernel
density with artifacts from the Gaussian proposal’s widely varying importance weights.
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the poorly matched proposal distribution of Fig. 2.17(e) causes many samples to have
negligible weight, greatly reducing the effective sample size. Heavy–tailed proposal dis-
tributions, which are more dispersed than the target density, typically provide greater
robustness [107, 192]. For high–dimensional problems, however, designing good propos-
als is extremely challenging, since even minor discrepancies can produce widely varying
importance weights. In graphical models, importance sampling is thus typically used
as a building block within more sophisticated Monte Carlo methods.

¥ 2.4.2 Kernel Density Estimation

In some applications of Monte Carlo methods, an explicit estimate p̂(x) of the target
density p(x) is desired, rather than a summary statistic as in eq. (2.138). Nonparametric
density estimators avoid choosing a particular form for p̂(x), and allow the complexity
of the estimated density to grow as more samples are observed. Given L independent
samples {x(`)}L

`=1, the corresponding kernel or Parzen window density estimate [230,
263] can be written as follows:

p̂(x) =

L∑

`=1

w(`)N (x; x(`), Λ) (2.142)

This estimator uses a Gaussian kernel function to smooth the raw sample set, intuitively
placing more probability mass in regions with many samples. Other kernel functions
may also be considered [263], but we focus on the Gaussian case. If these samples are
drawn from the target density p(x), the weights are set uniformly to w(`) = 1/L. More
generally, they could come from an importance sampling scheme [220] as in eq. (2.141).

The kernel density estimate of eq. (2.142) depends on the bandwidth or covariance
Λ of the Gaussian kernel function. There is an extensive literature on methods for
automatic bandwidth selection [263]. For example, the simple “rule of thumb” method
combines a robust covariance estimate with an asymptotic formula which assumes the
target density is Gaussian. While fast to compute, it often oversmooths multimodal
distributions. In such cases, more sophisticated cross–validation schemes can improve
performance [263]. Fig. 2.17 illustrates kernel density estimates constructed from three
different proposal distributions, with bandwidth automatically selected via likelihood
cross–validation. Note that inaccurate importance densities produce less reliable density
estimators (compare Fig. 2.17(d) and Fig. 2.17(f)).

¥ 2.4.3 Gibbs Sampling

We now describe a family of iterative, Markov chain Monte Carlo (MCMC) methods
which draw samples from an otherwise intractable target density p(x). Starting from
some initial global configuration x(0) ∈ X , subsequent states are determined via a first–
order Markov process:

x(t) ∼ q(x | x(t−1)) t = 1, 2, . . . (2.143)
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The transition distribution q (· | ·) is designed so that the resulting Markov chain is
irreducible and aperiodic, with p(x) as its unique equilibrium distribution [9]. Thus,
after many iterations T the state will be approximately distributed as x(T ) ∼ p(x),
providing a sample from the desired target density.

The Metropolis–Hastings algorithm [9, 107] provides a flexible, general framework
for constructing Markov chains with a desired equilibrium distribution p(x). In this
section, we describe the Gibbs sampler [106, 108, 196], a special case that is particularly
well suited to state spaces with internal structure. Let x = (x1, . . . , xN ) denote a
decomposition of the joint sample space into N variables. Gibbs samplers assume that
it is tractable to sample from the conditional distribution of one of these variables given
the other (N − 1). At iteration t, a particular variable i(t) is selected for resampling,
and the rest are held constant:

x
(t)
i ∼ p(xi | x

(t−1)
j , j 6= i) i = i(t) (2.144)

x
(t)
j = x

(t−1)
j j 6= i(t) (2.145)

If these sampling updates are iterated so that all variables are resampled infinitely often,
mild conditions ensure x(t) will converge to a sample from p(x) as t → ∞ [9, 108, 186].
Randomly permuting the order in which variables are resampled, rather than repeating
a single fixed order, often improves the rate of convergence [246].

Although there exist polynomial bounds on the time required for some MCMC
methods to mix to the target equilibrium distribution [9, 186], it can be difficult to
guarantee or diagnose convergence in high–dimensional models [192]. In practice, it
is often useful to run the sampler from several random initializations, and compare
problem–dependent summary statistics. If slow mixing is observed, one can consider
blocked Gibbs samplers which, rather than sampling individual variables, jointly resam-
ple small groups of variables which are thought to be strongly correlated [9, 185, 246].

For some models, Gibbs samplers are best implemented via auxiliary variable meth-
ods [9]. These algorithms are based on a joint distribution p(x, z) which is designed to
marginalize to the target density p(x). In the simplest case, auxiliary variables z are
chosen so that the following conditional densities are tractable:

x(t) ∼ p(x | z(t−1)) (2.146)

z(t) ∼ p(z | x(t)) (2.147)

More generally, eq. (2.146) may be replaced by several Gibbs sampling steps as in
eqs. (2.144, 2.145). Any joint sample (x(T ), z(T )) from the resulting Markov chain then
also provides an approximate sample x(T ) from the target density of interest. Some
auxiliary variable methods, such as the hybrid Monte Carlo algorithm [9, 107, 192], are
designed to improve the convergence rate of the resulting Markov chain. Alternatively,
auxiliary variable methods sometimes lead to tractable Gibbs samplers for models in
which direct conditional densities lack simple forms [222]. Several algorithms developed
in this thesis exploit this technique.
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Sampling in Graphical Models

The Gibbs sampler’s use of partitioned state spaces is ideally suited for inference in
graphical models [98, 108, 196, 231]. For example, consider a pairwise MRF p(x | y)
parameterized as in eq. (2.97). By the Markov properties discussed in Sec. 2.2.2, the
posterior distribution of xi depends only on the values at neighboring nodes:

p
(
xi | xV\i, y

)
= p

(
xi | xΓ(i), y

)
∝ ψi(xi, y)

∏

j∈Γ(i)

ψij(xi, xj) (2.148)

When the clique potentials are drawn from exponential families, it is typically easy to
sample from this conditional density. Iterating such resampling as in eqs. (2.144, 2.145),
we obtain a Gibbs sampler providing Monte Carlo estimates of the posterior marginals
motivated in Sec. 2.2.5. Alternatively, the related simulated annealing method [9, 108]
can be used to search for approximate MAP estimates.

Gibbs sampling is also used to estimate posterior distributions for model parame-
ters θ (see eq. (2.91)). First, hidden variables are sampled given fixed parameters as
in eq. (2.148). Then, conditioned on these hidden variables, conjugate priors p(θ | λ)
typically allow individual parameters to be tractably resampled [37, 50, 106, 128]. Al-
ternating between sampling x(t) ∼ p

(
x | θ(t−1), y

)
and θ(t) ∼ p

(
θ | x(t), y, λ

)
, we can

estimate statistics of the joint posterior p(x, θ | y, λ). The BUGS software package uses
this method to do Bayesian learning and inference in directed graphical models [115].

Gibbs Sampling for Finite Mixtures

To illustrate the Gibbs sampler, we consider a K–component exponential family mixture
model, as introduced in Sec. 2.2.4 (see Fig. 2.9). While the data x = {xi}N

i=1 are directly
observed, the latent cluster zi ∈ {1, . . . , K} associated with each data point is unknown.
The simplest mixture model Gibbs sampler thus alternates between sampling cluster
indicators z = {zi}N

i=1, mixture weights π, and cluster parameters {θk}K
k=1. We assume

the hyperparameters α and λ are set to fixed, known constants.
Given fixed cluster weights and parameters, the indicator variables are conditionally

independent. Let z\i denote the set of all cluster assignments excluding zi. Applying
Bayes’ rule to the generative model of eq. (2.79), we then have

p(zi = k | z\i, x, π, θ1, . . . , θK) = p(zi = k | xi, π, θ1, . . . , θK) (2.149)

∝ πkf(xi | θk) (2.150)

Here, the simplification of eq. (2.149) follows from the Markov properties of the directed
graph in Fig. 2.9. By evaluating the likelihood of xi with respect to each current cluster,
we may thus resample zi in O(K) operations.

As discussed in detail by [96], the mixture weights π and parameters {θk}K
k=1 are

mutually independent conditioned on the indicator variables z:

p(π, θ1, . . . , θK | z, x, α, λ) = p(π | z, α)
K∏

k=1

p(θk | {xi | zi = k} , λ) (2.151)
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Given mixture weights π(t−1) and cluster parameters {θ(t−1)
k }K

k=1 from the previous iteration,
sample a new set of mixture parameters as follows:

1. Independently assign each of the N data points xi to one of the K clusters by sampling
the indicator variables z = {zi}N

i=1 from the following multinomial distributions:

z
(t)
i ∼ 1

Zi

K∑

k=1

π
(t−1)
k f(xi | θ

(t−1)
k ) δ(zi, k) Zi =

K∑

k=1

π
(t−1)
k f(xi | θ

(t−1)
k )

2. Sample new mixture weights according to the following Dirichlet distribution:

π(t) ∼ Dir(N1 + α/K, . . . , NK + α/K) Nk =

N∑

i=1

δ(z
(t)
i , k)

3. For each of the K clusters, independently sample new parameters from the conditional
distribution implied by those observations currently assigned to that cluster:

θ
(t)
k ∼ p(θk | {xi | z

(t)
i = k} , λ)

When λ defines a conjugate prior, this posterior distribution is given by Prop. 2.1.4.

Algorithm 2.1. Direct Gibbs sampler for a K component exponential family mixture model, as
defined in Fig. 2.9. Each iteration resamples the cluster assignments for all N observations x = {xi}

N
i=1

once, and uses these updated assignments to choose new mixture parameters.

Assuming α is the precision of a symmetric Dirichlet prior, the posterior distribution of
the mixture weights π is also Dirichlet (see eq. (2.45)), with hyperparameters determined
by the number of observations Nk currently assigned to each cluster:

p(π | z, α) = Dir(N1 + α/K, . . . , NK + α/K) Nk =
N∑

i=1

δ(zi, k) (2.152)

Standard methods may then be used to sample new cluster weights [107]. Intuitively,
eq. (2.151) shows that the posterior distribution of the kth cluster’s parameters θk de-
pends only on those observations currently assigned to it. If λ parameterizes a conjugate
prior, Prop. 2.1.4 provides a closed form for this posterior. For example, when clusters
are Gaussian, θk = (µk, Λk) follows a normal–inverse–Wishart density (see Sec. 2.1.4).

Algorithm 2.1 summarizes the Gibbs sampler implied by these conditional distri-
butions. We initialize the mixture parameters according to their priors π(0) ∼ Dir(α),
θ
(0)
k ∼ H(λ). At each iteration, O(NK) operations are needed to resample all N in-

dicator variables. Note that because these indicators are mutually independent given
known parameters, the order of this resampling is unimportant. To allow fast parame-
ter resampling, we cache sufficient statistics (as in Thm. 2.1.2) of the data assigned to
each cluster, and recursively update these statistics as assignments change.

In Fig. 2.18, we use the Gibbs sampler of Alg. 2.1 to fit a mixture of K = 4 two–
dimensional Gaussians to N = 300 observations. Each Gaussian cluster is assigned a
weakly informative normal–inverse–Wishart prior, so that the posterior distribution of
θk = (µk, Λk) can be determined as described in Sec. 2.1.4. The columns of Fig. 2.18



log p(x | π, θ) = −539.17 log p(x | π, θ) = −497.77

log p(x | π, θ) = −404.18 log p(x | π, θ) = −454.15

log p(x | π, θ) = −397.40 log p(x | π, θ) = −442.89

Figure 2.18. Learning a mixture of K = 4 Gaussians using the Gibbs sampler of Alg. 2.1. Columns
show the current parameters after T=2 (top), T=10 (middle), and T=50 (bottom) iterations from two
random initializations. Each plot is labeled by the current data log–likelihood.
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compare two different random initializations. Because we use vague priors, the data
log–likelihood provides a reasonable convergence measure:

log p(x | π, θ1, . . . , θK) =
N∑

i=1

log

(
K∑

k=1

πkf(xi | θk)

)
(2.153)

We see that the Gibbs sampler effectively implements a random walk, which grad-
ually moves towards parameters with higher posterior probability. Although the in-
duced Markov chain may converge quickly (left column), it sometimes remains trapped
in locally optimal regions of the parameter space for many iterations (right column).
Fig. 2.20 compares this behavior to a more sophisticated Rao–Blackwellized sampler
developed in the following section.

¥ 2.4.4 Rao–Blackwellized Sampling Schemes

In models which impose structured dependencies on multiple latent variables, we can
often construct tractable Monte Carlo procedures which improve on the basic estimator
of eq. (2.139). Let p(x, z) denote a target distribution on two random variables x ∈ X ,
z ∈ Z. Given L independent samples {(x(`), z(`))}L

`=1 from this joint distribution, the
simplest approximation of a statistic f(x, z) equals

Ep[f(x, z)] =

∫

Z

∫

X
f(x, z)p(x, z) dx dz (2.154)

≈ 1

L

L∑

`=1

f(x(`), z(`)) = Ep̃[f(x, z)] (2.155)

Suppose, however, that the conditional density p(x | z) has a tractable analytic form.
In this case, we can consider the following alternative estimator:

Ep[f(x, z)] =

∫

Z

∫

X
f(x, z)p(x | z) p(z) dx dz (2.156)

=

∫

Z

[∫

X
f(x, z)p(x | z) dx

]
p(z) dz (2.157)

≈ 1

L

L∑

`=1

∫

X
f(x, z(`))p(x | z(`)) dx = Ep̃[Ep[f(x, z) | z]] (2.158)

The estimators of eqs. (2.155) and (2.158) are both unbiased, and converge to Ep[f(x, z)]
almost surely as L → ∞. Intuitively, however, the marginalized estimate of eq. (2.158)
should be more reliable [9, 39, 106], because the underlying sample space Z is smaller
than the original space X × Z.

In classical statistics, the Rao–Blackwell Theorem [167, 242] establishes the impor-
tance of sufficient statistics in parameter estimation. In particular, it allows minimum
variance unbiased estimators to be designed by conditioning simpler estimators with
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respect to appropriate statistics. The Rao–Blackwell Theorem is derived from the fol-
lowing relationship between conditional and unconditional variance, which is also more
broadly applicable.

Theorem 2.4.1 (Rao-Blackwell). Let x and z be dependent random variables, and
f(x, z) a scalar statistic. Consider the marginalized statistic Ex[f(x, z) | z], which is a
function solely of z. The unconditional variance Varxz[f(x, z)] is then related to the
variance of the marginalized statistic as follows:

Varxz[f(x, z)] = Varz[Ex[f(x, z) | z]] + Ez[Varx[f(x, z) | z]] (2.159)

≥ Varz[Ex[f(x, z) | z]] (2.160)

Proof. Using the iterated expectations [229, 242] induced by the conditional factoriza-
tion p(x, z) = p(x | z) p(z), the unconditional variance of f(x, z) equals

Varxz[f(x, z)] = Exz

[
f(x, z)2

]
− Exz[f(x, z)]2

= Ez

[
Ex

[
f(x, z)2 | z

]]
− Ez[Ex[f(x, z) | z]]2

Subtracting and adding Ez[Ex[f(x, z) | z]2] and regrouping terms, we may then verify
eq. (2.159). Equation (2.160) follows from the non–negativity of Varx[f(x, z) | z].

As established by eq. (2.160), analytic marginalization of some variables from a joint
distribution always reduces the variance of later estimates. Applying this result, the so–
called Rao–Blackwellized Monte Carlo estimator [9, 39] of eq. (2.158) has lower variance
than the direct estimator of eq. (2.155). Intuitively, eq. (2.159) shows that marginal-
ization of x is most useful when the average conditional variance of x is large.

Rao–Blackwellization also plays an important role in other, more sophisticated
Monte Carlo methods. In particular, the variance inequality of Thm. 2.4.1 can be gen-
eralized to bound the variance of marginalized importance estimators (see Sec. 2.4.1).
As we discuss in Chap. 3, this approach has been used to design Rao–Blackwellized
improvements of standard particle filters [71, 73]. Similarly, Rao–Blackwellization may
dramatically improve the efficiency and accuracy of Gibbs samplers [39, 106, 185]. In
particular, for hierarchical models based on conjugate priors, Prop. 2.1.4 can often
be used to integrate over latent parameters in closed form. Importantly, the variance
reduction guaranteed by Thm. 2.4.1 generalizes to estimates based on the correlated
samples produced by a Gibbs sampler [185].

Rao–Blackwellized Gibbs Sampling for Finite Mixtures

To illustrate the design of Rao–Blackwellized samplers, we revisit the mixture model
Gibbs sampler summarized in Alg. 2.1. Given fixed cluster indicators z, we show that
conjugate priors allow mixture weights π and parameters {θk}K

k=1 to be analytically
marginalized. We may then directly determine the predictive distribution of zi given
the other cluster assignments z\i, and construct a more efficient sampler.
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Consider the K–component exponential family mixture model of Fig. 2.9, and as-
sume H(λ) specifies a conjugate prior for the clusters θk. Integrating over the param-
eters π and {θk}K

k=1, the model’s Markov structure implies the following factorization:

p(zi | z\i, x, α, λ) ∝ p(zi | z\i, α) p(xi | z, x\i, λ) (2.161)

The first term arises from the marginalization of the mixture weights π. Because
these weights have a symmetric Dirichlet prior, this predictive distribution is given
by eq. (2.46) of Sec. 2.1.3, so that

p(zi = k | z\i, α) =
N−i

k + α/K

N − 1 + α
N−i

k =
∑

j 6=i

δ(zj , k) (2.162)

Note that N−i
k counts the number of observations currently assigned to the kth clus-

ter excluding xi, the datum whose assignment zi is being resampled. Similarly, the
likelihood term of eq. (2.161) depends on the current assignments z\i as follows:

p(xi | zi = k, z\i, x\i, λ) = p(xi | {xj | zj = k, j 6= i} , λ) (2.163)

For each of the K possible values of zi, eq. (2.163) equals the predictive likelihood (as in
eq. (2.19)) of xi given the other data currently assigned to that cluster. Because H(λ) is
conjugate to θk, these likelihoods can be analytically determined from Prop. 2.1.4. For
example, Gaussian clusters lead to Student–t predictive distributions (see Sec. 2.1.4),
which can usually be approximated by the moment–matched Gaussian of eq. (2.64).

Algorithm 2.2 provides one possible Rao–Blackwellized Gibbs sampler based on
these predictive distributions. As with the direct Gibbs sampler of Alg. 2.1, O(NK)
operations are required to resample N cluster assignments. To improve the Markov
chain’s convergence rate, each iteration resamples indicator variables in a different,
randomly chosen order [246]. Fast predictive likelihood evaluation is achieved by caching
the sufficient statistics φ(x) (as in Thm. 2.1.2) associated with each cluster. When an
observation xi is reassigned, these statistics are easily updated by subtracting φ(xi)

from the previous cluster z
(t−1)
i , and adding φ(xi) to the newly chosen cluster z

(t)
i . We

initialize the sampler by sequentially choosing z
(0)
i conditioned on {z(0)

1 , . . . , z
(0)
i−1}.

In Fig. 2.19, we use the Rao–Blackwellized Gibbs sampler of Alg. 2.2 to fit a mixture
of K = 4 two–dimensional Gaussians to N = 300 observations. Compared to the direct
Gibbs sampler of Alg. 2.1 (tested on identical data in Fig. 2.18), the Rao–Blackwellized
sampler has less random variation from iteration to iteration. Fig. 2.20 compares the
data log–likelihoods (eq. (2.153)) produced by these two algorithms from 100 different
random initializations. Typically, the Rao–Blackwellized sampler much more rapidly
reaches parameters with high posterior probability. Intuitively, this happens because
marginalized, predictive likelihoods implicitly update the model’s parameters after every
indicator reassignment, rather than once per iteration as in Alg. 2.1. However, the two
samplers have similar worst case performance, and may occasionally remain in local



log p(x | π, θ) = −399.06 log p(x | π, θ) = −461.94

log p(x | π, θ) = −397.38 log p(x | π, θ) = −449.23

log p(x | π, θ) = −396.53 log p(x | π, θ) = −448.68

Figure 2.19. Learning a mixture of K = 4 Gaussians using the Rao–Blackwellized Gibbs sampler of
Alg. 2.2. Columns show the current parameters after T=2 (top), T=10 (middle), and T=50 (bottom)
iterations from two random initializations. Each plot is labeled by the current data log–likelihood.
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Given previous cluster assignments z(t−1), sequentially sample new assignments as follows:

1. Sample a random permutation τ(·) of the integers {1, . . . , N}.
2. Set z = z(t−1). For each i ∈ {τ(1), . . . , τ(N)}, sequentially resample zi as follows:

(a) For each of the K clusters, determine the predictive likelihood

fk(xi) = p(xi | {xj | zj = k, j 6= i} , λ)

This likelihood can be computed from cached sufficient statistics via Prop. 2.1.4.

(b) Sample a new cluster assignment zi from the following multinomial distribution:

zi ∼
1

Zi

K∑

k=1

(N−i
k + α/K)fk(xi)δ(zi, k) Zi =

K∑

k=1

(N−i
k + α/K)fk(xi)

N−i
k is the number of other observations assigned to cluster k (see eq. (2.162)).

(c) Update cached sufficient statistics to reflect the assignment of xi to cluster zi.

3. Set z(t) = z. Optionally, mixture parameters may be sampled via steps 2–3 of Alg. 2.1.

Algorithm 2.2. Rao–Blackwellized Gibbs sampler for a K component exponential family mixture
model, as defined in Fig. 2.9. Each iteration sequentially resamples the cluster assignments for all N

observations x = {xi}
N
i=1 in a different random order. Mixture parameters are integrated out of the

sampling recursion using cached sufficient statistics of the parameters assigned to each cluster.
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Figure 2.20. Comparison of standard (Alg. 2.1, dark blue) and Rao–Blackwellized (Alg. 2.2, light red)
Gibbs samplers for a mixture of K = 4 two–dimensional Gaussians. We compare data log–likelihoods at
each of 1000 iterations for the single N = 300 point dataset of Figs. 2.18 and 2.19. Left: Log–likelihood
sequences for 20 different random initializations of each algorithm. Right: From 100 different random
initializations, we show the median (solid), 0.25 and 0.75 quantiles (thick dashed), and 0.05 and 0.95
quantiles (thin dashed) of the resulting log–likelihood sequences. The Rao–Blackwellized sampler has
superior typical performance, but occasionally remains trapped in local optima for many iterations.

optima for many iterations (see right columns of Figs. 2.18 and 2.19). These results
suggest that while Rao–Blackwellization can usefully accelerate mixing, convergence
diagnostics are still important.
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¥ 2.5 Dirichlet Processes

It is often difficult to find simple parametric models which adequately describe com-
plex, realistic datasets. Nonparametric statistical methods avoid assuming restricted
functional forms, and thus allow the complexity and accuracy of the inferred model
to grow as more data is observed. Strictly speaking, nonparametric models are rarely
free of parameters, since they must have a concrete, computationally tractable repre-
sentation. In Bayesian statistics, nonparametric methods typically learn distributions
on function spaces, and thus effectively involve infinitely many parameters [21, 109,
113, 160, 216, 238]. Complexity is controlled via appropriate prior distributions, so that
small datasets produce simple predictions, while additional observations induce richer
posteriors.

To motivate nonparametric statistical methods, consider De Finetti’s representation
(see Thm. 2.2.2) of N infinitely exchangeable random variables:

p(x1, x2, . . . , xN ) =

∫

Θ
p(θ)

N∏

i=1

p(xi | θ) dθ (2.164)

In general, this decomposition is only guaranteed when Θ is an infinite–dimensional
space of probability measures. Many Bayesian nonparametric methods thus involve
families of computationally tractable distributions on probability measures [84]. In
particular, the Dirichlet process [28, 83, 254] provides a distribution on distributions
with many attractive properties, and is widely used in practice [60, 76, 105, 160, 289].

The following sections establish several representations of the Dirichlet process,
which characterize its behavior and lead to computationally tractable learning and in-
ference algorithms. We then show that Dirichlet processes provide an elegant alternative
to parametric model selection, and discuss extensions to structured, hierarchical models.
For other introductions to Dirichlet processes, see [84, 109, 113, 160, 216, 289, 313].

¥ 2.5.1 Stochastic Processes on Probability Measures

Because nonparametric methods use stochastic processes to model infinite–dimensional
spaces, they are often implicitly characterized by the distributions they induce on certain
finite statistics. For example, Gaussian processes provide a distribution over real–valued
functions which is widely used for non–linear regression and classification [1, 109, 229,
253]. By definition, a function f : X → R is distributed according to a Gaussian
process if and only if p(f(x1), . . . , f(xN )), the density of that function’s values at any
N points xi ∈ X , is jointly Gaussian. This allows Gaussian processes to be tractably
parameterized by a mean function and a covariance kernel specifying the correlations
within any finite point set.

While Gaussian processes define distributions on random functions, a Dirichlet
process defines a distribution on random probability measures, or equivalently non–
negative functions which integrate to one. Let Θ denote a measurable space, as in
the parameter space underlying De Finetti’s mixture representation (eq. (2.164)). A
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Dirichlet process is then parameterized by a base measure H on Θ, and a positive
scalar concentration parameter α. Analogously to the Gaussian case, Dirichlet pro-
cesses are characterized by the distributions they induce on finite measurable partitions
(see Fig. 2.21) of the parameter space.

Theorem 2.5.1. Let H be a probability distribution on a measurable space Θ, and α a
positive scalar. Consider a finite partition (T1, . . . , TK) of Θ:

K⋃

k=1

Tk = Θ Tk ∩ T` = ∅ k 6= ` (2.165)

A random probability distribution G on Θ is drawn from a Dirichlet process if its mea-
sure on every finite partition follows a Dirichlet distribution:

(G(T1), . . . , G(TK)) ∼ Dir(αH(T1), . . . , αH(TK)) (2.166)

For any base measure H and concentration parameter α, there exists a unique stochastic
process satisfying these conditions, which we denote by DP(α, H).

Proof. For a characterization as in eq. (2.166) to be valid, probabilities must appropri-
ately add when a partition’s cells are combined. The aggregation property of the finite
Dirichlet distribution (see eq. (2.43)) is one way to guarantee this. Ferguson originally
established the existence of the Dirichlet process via Kolmogorov’s consistency condi-
tions [83]. Later, Sethuraman provided a simpler, constructive definition [254] which
we describe in Sec. 2.5.2.

Fig. 2.21 illustrates the consistency requirements relating different partitions of the
parameter space Θ. Combining eqs. (2.40) and (2.166), for any region T ⊂ Θ the
expected measure of a random sample from a Dirichlet process equals

E[G(T )] = H(T ) G ∼ DP(α, H) (2.167)

The base measure H thus specifies the mean of DP(α, H). As we show in Sec. 2.5.3, the
concentration parameter α is similar to the precision of a finite Dirichlet distribution,
and determines the average deviation of samples from the base measure.

Posterior Measures and Conjugacy

Let G ∼ DP(α, H) be sampled from a Dirichlet process, and θ̄ ∼ G be a sample from
that distribution. Consider the finite Dirichlet distribution induced by a fixed partition,
as in eq. (2.166). Via the conjugacy of the Dirichlet distribution (see eq. (2.45)), the
posterior distribution is also Dirichlet:

p
(
(G(T1), . . . , G(TK)) | θ̄ ∈ Tk

)
= Dir(αH(T1), . . . , αH(Tk) + 1, . . . , αH(TK)) (2.168)

Note that the observation θ̄ only affects the Dirichlet parameter of the unique, arbi-
trarily small cell Tk containing it [160]. Formalizing this analysis, it can be shown that
the posterior distribution has a Dirac point mass δθ̄ centered on each observation.
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Figure 2.21. Dirichlet processes induce Dirichlet distributions on every finite, measurable partition.
Left: An example base measure H on a bounded, two–dimensional space Θ (darker regions have higher
probability). Center: A partition with K = 3 cells. The weight that a random measure G ∼ DP(α, H)
assigns to these cells follows a Dirichlet distribution (see eq. (2.166)). We shade each cell Tk according
to its mean E[G(Tk)] = H(Tk). Right: Another partition with K = 5 cells. The consistency of G

implies, for example, that (G(T1) + G(T2)) and G( eT1) follow identical beta distributions.

Proposition 2.5.1. Let G ∼ DP(α, H) be a random measure distributed according to
a Dirichlet process. Given N independent observations θ̄i ∼ G, the posterior measure
also follows a Dirichlet process:

p
(
G | θ̄1, . . . , θ̄N , α, H

)
= DP

(
α + N,

1

α + N

(
αH +

N∑

i=1

δθ̄i

))
(2.169)

Proof. As shown by Ferguson [83], this result follows directly from the conjugate form
of finite Dirichlet posterior distributions (see eq. (2.45)). See Sethuraman [254] for an
alternative proof.

There are interesting similarities between eq. (2.169) and the general form of conjugate
priors for exponential families (see Prop. 2.1.4). The Dirichlet process effectively defines
a conjugate prior for distributions on arbitrary measurable spaces. In some contexts,
the concentration parameter α can then be seen as expressing confidence in the base
measure H via the size of a pseudo–dataset (see [113] for further discussion).

Neutral and Tailfree Processes

The conjugacy of Prop. 2.5.1, which leads to tractable computational methods discussed
later, provides one practical motivation for the Dirichlet process. In this section, we
show that Dirichlet processes are also characterized by certain conditional independen-
cies. These properties reveal both strengths and weaknesses of the Dirichlet process,
and have motivated several other families of stochastic processes.

Let G be a random probability measure on a parameter space Θ. The distribution
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of G is neutral [69, 84] with respect to a finite partition (T1, . . . , TK) of Θ if and only if

G(Tk) is independent of

{
G(T`)

1 − G(Tk)

∣∣∣ ` 6= k

}
(2.170)

given that G(Tk) < 1. Thus, for a neutral process, the probability mass assigned to
some cell Tk affects the weight of other cells only through the normalization constraint.
The relative probabilities assigned to those cells are independent random variables. As
shown by the following theorem, the Dirichlet process is characterized by its neutrality
with respect to every measurable partition.

Theorem 2.5.2. Consider a distribution P on probability measures G for some space
Θ. Assume that P assigns positive probability to more than one measure G, and that
with probability one samples G ∼ P assign positive measure to at least three distinct
points θ ∈ Θ. The following conditions are then equivalent:

(i) P = DP(α, H) is a Dirichlet process for some base measure H on Θ.

(ii) P is neutral with respect to every finite, measurable partition of Θ.

(iii) For every measurable T ⊂ Θ, and any N observations θ̄i ∼ G, the posterior
distribution p

(
G(T ) | θ̄1, . . . , θ̄N

)
depends only on the number of observations that

fall within T (and not their particular locations).

Proof. This result was derived by Doksum and Fabius via related characterizations of
the finite Dirichlet distribution. See [69, 84] for a more precise description of degenerate
cases, and additional references.

This theorem shows that Dirichlet processes effectively ignore the topology of the pa-
rameter space Θ. Observations provide information only about those cells which di-
rectly contain them. In addition, an observation near the boundary of a cell provides
the same amount of information as an observation in its center. Thus, while neutrality
simplifies the structure of posterior distributions, it also limits the expressiveness of the
corresponding prior.

For problems in which Θ = R is the real line, a less restrictive form of neutrality
has been proposed. A random cumulative distribution F (t) = Pr[θ ≤ t] is neutral to
the right (NTR) [69, 84] if, for any K times t1 < · · · < tK , the normalized increments

{
F (t1),

F (t2) − F (t1)

1 − F (t1)
, . . . ,

F (tK) − F (tK−1)

1 − F (tK−1)

}
(2.171)

are mutually independent. This condition is strictly weaker than that of eq. (2.170),
and several NTR generalizations of the Dirichlet process have been suggested [69, 313].
Any NTR stochastic process can be expressed as F (t) = 1−exp{−Y (t)} for some mono-
tonically increasing, independent increments process Y (t). For the Dirichlet process,
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increments of Y (t) are exponentially distributed [84, 150]. In addition, NTR processes
are tailfree, so that the posterior distribution p

(
F (t) | θ̄

)
is independent of observa-

tions at later times θ̄ > t. Generalizing the conjugacy of Prop. 2.5.1, the posterior
distribution of F (t) given an observation θ̄ ≤ t remains neutral to the right [69].

While NTR processes can more flexibly model temporal structure than the Dirichlet
process, they are limited to the real line. A recently proposed class of spatial neutral
to the right processes [152] provides one extension to general parameter spaces. Al-
ternatively, tailfree processes can be generalized to define conditional independencies
on arbitrary sequences of nested partitions [69, 84]. Analogously to Thm. 2.5.2, only
Dirichlet processes are tailfree with respect to every hierarchical partition. However,
a broader class of Pólya tree distributions [84, 179, 200] can be defined via particular,
possibly inhomogeneous partition trees. While this tree structure can encode detailed
prior knowledge [180], its use of a fixed discretization scales poorly to high–dimensional
spaces, and can produce spurious discontinuities. Dirichlet diffusion trees [223] address
these issues by using a branching process to sample hierarchical dependency structures.

¥ 2.5.2 Stick–Breaking Processes

The preceding section provides several implicit characterizations of the Dirichlet pro-
cess, including a desirable conjugacy property. However, these results do not directly
provide a mechanism for sampling from Dirichlet processes, or predicting future ob-
servations. In this section, we describe an explicit stick–breaking construction [254]
which shows that Dirichlet measures are discrete with probability one. This leads to
a simple Pólya urn model for predictive distributions known as the Chinese restaurant
process [28, 233]. These representations play a central role in computational methods
for Dirichlet processes.

Consider Prop. 2.5.1, which provides an expression for the posterior distribution of
a Dirichlet distributed random measure G ∼ DP(α, H) given N observations θ̄i ∼ G.
From eq. (2.167), the expected measure of any set T ⊂ Θ then equals

E
[
G(T ) | θ̄1, . . . , θ̄N , α, H

]
=

1

α + N

(
αH(T ) +

N∑

i=1

δθ̄i
(T )

)
(2.172)

For any finite concentration parameter α, this implies that

lim
N→∞

E
[
G(T ) | θ̄1, . . . , θ̄N , α, H

]
=

∞∑

k=1

πkδθk
(T ) (2.173)

where {θk}∞k=1 are the unique values of the observation sequence {θ̄i}∞i=1, and πk is the
limiting empirical frequency of θk. Assuming the posterior distribution concentrates
about its mean, eq. (2.173) suggests that Dirichlet measures are discrete with probability
one [160]. The following theorem verifies this hypothesis, and provides an explicit
construction for the infinite set of mixture weights.
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Theorem 2.5.3. Let π = {πk}∞k=1 be an infinite sequence of mixture weights derived
from the following stick–breaking process, with parameter α > 0:

βk ∼ Beta(1, α) k = 1, 2, . . . (2.174)

πk = βk

k−1∏

`=1

(1 − β`) = βk

(
1 −

k−1∑

`=1

π`

)
(2.175)

Given a base measure H on Θ, consider the following discrete random measure:

G(θ) =
∞∑

k=1

πkδ(θ, θk) θk ∼ H (2.176)

This construction guarantees that G ∼ DP(α, H). Conversely, samples from a Dirichlet
process are discrete with probability one, and have a representation as in eq. (2.176).

Proof. The consistency of eq. (2.175) follows from an induction argument. Manipulating
this expression, it can be shown that

1 −
K∑

k=1

πk =

K∏

k=1

(1 − βk) −→ 0

with probability one as K → ∞, so that eq. (2.176) defines a valid probability mea-
sure. Ferguson established the almost sure discreteness of G using a normalized gamma
process representation [83, 168]. Sethuraman later derived the explicit stick–breaking
construction for the mixture weights [254]. The beta distribution of eq. (2.174) arises
from the form of marginal distributions of finite Dirichlet densities (see eq. (2.44)).

The stick–breaking interpretation of this construction is illustrated in Fig. 2.22. Mixture
weights π partition a unit–length “stick” of probability mass among an infinite set of
random parameters. The kth mass πk is a random proportion βk of the stick remaining
after sampling the first (k − 1) mixture weights. As is standard in the statistics litera-
ture [150, 233, 289], we use π ∼ GEM(α) to indicate a set of mixture weights sampled
from this process, named after Griffiths, Engen, and McCloskey.

This representation of the Dirichlet process provides another interpretation of the
concentration parameter α. Because the stick–breaking proportions βk ∼ Beta(1, α),
standard moment formulas (see eq. (2.40)) show that

E[βk] =
1

1 + α
(2.177)

For small α, it follows that the first few mixture components are typically assigned the
majority of the probability mass. As α → ∞, samples G ∼ DP(α, H) approach the
base measure H by assigning small, roughly uniform weights to a densely sampled set of
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Figure 2.22. Sequential stick–breaking construction of the infinite set of mixture weights π ∼ GEM(α)
corresponding to a measure G ∼ DP(α, H). Left: The first weight π1 ∼ Beta(1, α). Each subsequent
weight πk (red) is some random proportion βk (blue) of the remaining, unbroken “stick” of probability
mass. Right: The first K = 20 weights generated by four random stick–breaking constructions (two
with α = 1, two with α = 5). Note that the weights πk do not monotonically decrease.

discrete parameters {θk}∞k=1. For a given α and dataset size N , there are strong bounds
on the accuracy of particular finite truncations of this stick–breaking process [147],
which are often used in approximate computational methods [29, 147, 148, 289].

Several other stick–breaking processes have been proposed which sample the pro-
portions βk from different distributions [147, 148, 233]. For example, the two–parameter
Poisson–Dirichlet, or Pitman–Yor, process [234] can produce heavier–tailed weight dis-
tributions which better match power laws arising in natural language processing [117,
287]. As we show next, these stick–breaking processes sometimes lead to predictive
distributions with simple Pólya urn representations.

Prediction via Pólya Urns

Because Dirichlet processes produce discrete random measures G, there is a strictly
positive probability of multiple observations θ̄i ∼ G taking identical values. Given N
observations {θ̄i}N

i=1, suppose that they take K ≤ N distinct values {θk}K
k=1. The

posterior expectation of any set T ⊂ Θ (see eq. (2.172)) can then be written as

E
[
G(T ) | θ̄1, . . . , θ̄N , α, H

]
=

1

α + N

(
αH(T ) +

K∑

k=1

Nkδθk
(T )

)
(2.178)

Nk ,

N∑

i=1

δ(θ̄i, θk) k = 1, . . . , K (2.179)

Note that Nk is defined to be the number of previous observations equaling θk, and
that K is a random variable [10, 28, 233]. Analyzing this expression, the predictive
distribution of the next observation θ̄N+1 ∼ G can be explicitly characterized.
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Theorem 2.5.4. Let G ∼ DP(α, H) be distributed according to a Dirichlet process,
where the base measure H has corresponding density h(θ). Consider a set of N obser-
vations θ̄i ∼ G taking K distinct values {θk}K

k=1. The predictive distribution of the next
observation then equals

p
(
θ̄N+1 = θ | θ̄1, . . . , θ̄N , α, H

)
=

1

α + N

(
αh(θ) +

K∑

k=1

Nkδ(θ, θk)

)
(2.180)

where Nk is the number of previous observations of θk, as in eq. (2.179).

Proof. Letting Tk be an arbitrarily small set containing θk, eq. (2.178) suggests that
Pr

[
θ̄N+1 = θk

]
∝ Nk, while the base measure is assigned total posterior probability

α/(α + N). For a formal argument, see Blackwell and MacQueen [28].

Dirichlet processes thus lead to simple predictive distributions, which can be evaluated
by caching the number of previous observations taking each distinct value.

The generative process defined by Thm. 2.5.4 can be interpreted via a generalized
Pólya urn model [28]. Consider an urn containing one ball for each preceding ob-
servation, with a different color for each distinct θk. For each ball drawn from the
urn, we replace that ball and add one more of the same color. There is also a special
“weighted” ball which is drawn with probability proportional to α normal balls, and
has some new, previously unseen color θk̄ ∼ H. This procedure can be used to sample
observations from a Dirichlet process, without explicitly constructing the underlying
mixture G ∼ DP(α, H).

Chinese Restaurant Processes

As the Dirichlet process assigns observations θ̄i to distinct values θk, it implicitly parti-
tions the data. Let zi indicate the subset, or cluster, associated with the ith observation,
so that θ̄i = θzi

. The predictive distribution of eq. (2.180) then shows that

p(zN+1 = z | z1, . . . , zN , α) =
1

α + N

(
K∑

k=1

Nkδ(z, k) + αδ(z, k̄)

)
(2.181)

where k̄ denotes a new, previously empty cluster. Inspired by the seemingly infinite seat-
ing capacity of restaurants in San Francisco’s Chinatown, Pitman and Dubins called this
distribution over partitions the Chinese restaurant process [233]. The restaurant’s infi-
nite set of tables are analogous to clusters, and customers to observations (see Fig. 2.23).
Customers are social, so that the ith customer sits at table k with probability propor-
tional to the number of already seated diners Nk. Sometimes, however, customers
(observations) choose a new table (cluster). Note that there is no a priori distinction
between the unoccupied tables. Dirichlet processes extend this construction by serving
each table a different, independently chosen dish (parameter) θk.
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Figure 2.23. Chinese restaurant process interpretation of the partitions induced by the Dirichlet
process DP(α, H). Tables (circles) are analogous to clusters, and customers (diamonds) to a series of
observations. Top row: A starting configuration, in which seven customers occupy three tables. Each
table is labeled with the probability that the next customer sits there. Middle row: New customers sit
at occupied table k with probability proportional to the number of previously seated diners Nk. In this
example, the eighth customer joins the most popular, and hence likely, table. Bottom row: Customers
may also sit at one of the infinitely many unoccupied tables. The ninth diner does this.

Importantly, the Chinese restaurant process induces an exchangeable distribution on
partitions, so that the joint distribution is invariant to the order in which observations
are assigned to clusters. Exchangeability follows from De Finetti’s Theorem [28], given
the connection to Dirichlet processes established by Thm. 2.5.4. Alternatively, it can
be directly verified via an analysis of eq. (2.181). There are a variety of combinatorial
characterizations of the partition structure produced by the Chinese restaurant pro-
cess [10, 121, 232, 233]. In particular, the number of occupied tables K almost surely
approaches α log(N) as N → ∞. This shows that the Dirichlet process is indeed a
nonparametric prior, as it favors models whose complexity grows with the dataset size.

Generalizations of the Chinese restaurant process can be constructed for certain
other stick–breaking processes, including the Pitman–Yor process [147, 233]. Impor-
tantly, the simple predictive distributions induced by these processes lead to efficient
Monte Carlo algorithms for learning and inference [76, 222, 237]. In contrast, other al-
ternatives such as neutral to the right processes may have posterior distributions which
lack simple, explicit forms [152].
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¥ 2.5.3 Dirichlet Process Mixtures

Using nonparametric methods, we now revisit De Finetti’s representation (Thm. 2.2.2)
of exchangeable random variables {xi}N

i=1. To apply this theory when xi ∈ X is con-
tinuous, we need a tractable framework for learning infinite–dimensional probability
measures. As shown in previous sections, Dirichlet processes lead to posterior distri-
butions with simple, explicit forms. However, because it assigns probability one to
discrete measures (Thm. 2.5.3), a Dirichlet process prior expects multiple observations
to take identical values. Furthermore, Thm. 2.5.2 shows that the posterior measure
assigned to xi would never be influenced by observations xj 6= xi, regardless of their
proximity. In many applications, Dirichlet processes are thus too restrictive to directly
model continuous observations [216, 232].

To address these issues, we consider a hierarchical model in which observations
are sampled from some parameterized family F (θ). As in finite mixture models (see
Fig. 2.9), each observation xi is based on an independently sampled parameter θ̄i:

θ̄i ∼ G

xi ∼ F
(
θ̄i

) (2.182)

For greater flexibility and robustness, we place a nonparametric, Dirichlet process prior
on the latent parameter distribution G ∼ DP(α, H). The stick–breaking construction
of Thm. 2.5.3 then implies that

G(θ) =
∞∑

k=1

πkδ(θ, θk)
π ∼ GEM(α)

θk ∼ H(λ) k = 1, 2, . . .
(2.183)

Fig. 2.24 shows a graphical representation of the resulting Dirichlet process mixture
model [10, 76, 187]. Typically, F (θ) is some exponential family of densities, and H(λ) a
corresponding conjugate prior. Note that this construction allows differing observations
to be associated with the same underlying cluster. The likelihood F (θ) effectively
imposes a notion of distance on X , and thus allows observations to be extrapolated
to neighboring regions. By using a Dirichlet process, however, we avoid constraining
these predictions with a global parametric form. Fig. 2.25 illustrates Dirichlet process
mixtures in which θk = (µk, Λk) parameterizes a two–dimensional Gaussian.

The Chinese restaurant process provides another useful representation of Dirichlet
process mixtures [76, 237]. Letting zi denote the unique cluster, or table, associated
with xi, the generative process of eq. (2.182) can be equivalently expressed as

zi ∼ π

xi ∼ F (θzi
)

(2.184)

As summarized in Fig. 2.24, marginalizing these indicator variables reveals an infinite
mixture model with the following form:

p(x | π, θ1, θ2, . . .) =
∞∑

k=1

πkf(x | θk) (2.185)
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Figure 2.24. Directed graphical representations of an infinite, Dirichlet process mixture model. Mix-
ture weights π ∼ GEM(α) follow a stick–breaking process, while cluster parameters are assigned in-
dependent priors θk ∼ H(λ). Left: Indicator variable representation, in which zi ∼ π is the cluster
that generates xi ∼ F (θzi). Right: Alternative distributional form, in which G is an infinite discrete
distribution on Θ. θ̄i ∼ G are the parameters of the cluster that generates xi ∼ F (θ̄i). We illustrate
with an infinite Gaussian mixture, where cluster variances are known (bottom) and H(λ) is a Gaussian
prior on cluster means (top). Sampled cluster means θ̄1, θ̄2, and corresponding Gaussians, are shown
for two observations x1, x2.

Rather than choose a finite model order K, Dirichlet process mixtures use the stick–
breaking prior to control complexity (see Fig. 2.22). As we discuss later, this relaxation
leads to algorithms which automatically infer the number of clusters exhibited by a
particular dataset. Importantly, the predictive distribution implied by the Chinese
restaurant process (eq. (2.181)) has a clustering bias, and favors simpler models in
which observations (customers) share parameters (dishes). Additional clusters (tables)
appear as more observations are generated (see Fig. 2.25).

Learning via Gibbs Sampling

Given N observations x = {xi}N
i=1 from a Dirichlet process mixture as in Fig. 2.24, we

would like to infer the number of latent clusters underlying those observations, and their
parameters θk. As with finite mixture models, the exact posterior distribution p(π, θ | x)
contains terms corresponding to each possible partition z of the observations [10, 187].
While the Chinese restaurant process tractably specifies the prior probability of indi-
vidual partitions (see eq. (2.181)), explicit enumeration of the exponentially large set of
potential partitions is intractable. There is thus an extensive literature on approximate
computational methods for Dirichlet process mixtures [29, 76, 121, 147, 148, 151, 222].

In this section, we generalize the Rao–Blackwellized Gibbs sampler of Alg. 2.2
from finite to infinite mixture models. As before, we sample the indicator variables
z = {zi}N

i=1 assigning observations to latent clusters, marginalizing mixture weights π



Figure 2.25. Each column shows an observation sequence from a Dirichlet process mixture of 2D
Gaussians, with concentration α = 1. We show the existing clusters (covariance ellipses, intensity pro-
portional to probability) after N = 50 (top), N = 200 (middle), and N = 1000 (bottom) observations.
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and parameters {θk}∞k=1. The resulting collapsed Gibbs sampler [222] is typically more
efficient than alternatives which explicitly sample parameters [76, 237]. For simplic-
ity, we assume that cluster priors H(λ) are conjugate to the chosen likelihood F (θ).
Non–conjugate priors can be handled via auxiliary variable methods [222].

Given fixed cluster assignments z\i for other observations, Fig. 2.24 implies that the
posterior distribution of zi factors as follows:

p(zi | z\i, x, α, λ) ∝ p(zi | z\i, α) p(xi | z, x\i, λ) (2.186)

The first term expresses the prior on partitions implied by the Chinese restaurant
process. Recall that the Dirichlet process induces an exchangeable distribution on
partitions, which is invariant to the order of observations. In evaluating eq. (2.186),
we may thus equivalently think of zi as the last in a sequence of N observations. If
z\i instantiates K clusters, and assigns N−i

k observations to the kth cluster, eq. (2.181)
then implies that

p(zi | z\i, α) =
1

α + N − 1

(
K∑

k=1

N−i
k δ(zi, k) + αδ(zi, k̄)

)
(2.187)

As before, k̄ denotes one of the infinitely many unoccupied clusters.
For the K clusters to which z\i assigns observations, the likelihood of eq. (2.186)

follows the expression (eq. (2.163)) derived for the finite mixture Gibbs sampler:

p(xi | zi = k, z\i, x\i, λ) = p(xi | {xj | zj = k, j 6= i} , λ) (2.188)

This term is the predictive likelihood of xi, as determined by Prop. 2.1.4, given the
other observations which z\i associates with that cluster. Similarly, new clusters k̄ are
based upon the predictive likelihood implied by the prior hyperparameters λ:

p
(
xi | zi = k̄, z\i, x\i, λ

)
= p(xi | λ) =

∫

Θ
f(xi | θ)h(θ | λ) dθ (2.189)

Assuming H(λ) specifies a proper, conjugate prior, eq. (2.189) has a closed form similar
to that of eq. (2.188).

Combining these expressions, we arrive at the Gibbs sampler of Alg. 2.3. As in
Alg. 2.2, we cache and recursively update statistics of each cluster’s associated observa-
tions (see Thm. 2.1.2). Because the infinite set of potential clusters have identical priors,
we only explicitly store a randomly sized list of those clusters to which at least one ob-
servation is assigned. Standard data structures then allow clusters to be efficiently
created when needed (Alg. 2.3, step 2(c)), and deleted if all associated observations are
reassigned (Alg. 2.3, step 4). Comparing Algs. 2.2 and 2.3, we see that even though
Dirichlet process mixtures have infinitely many parameters, learning is possible via a
simple extension of algorithms developed for finite mixture models.

Cluster assignments z(t) produced by the Gibbs sampler of Alg. 2.3 provide esti-
mates K(t) of the number of clusters underlying the observations x, as well as their
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Given the previous concentration parameter α(t−1), cluster assignments z(t−1), and cached
statistics for the K current clusters, sequentially sample new assignments as follows:

1. Sample a random permutation τ(·) of the integers {1, . . . , N}.
2. Set α = α(t−1) and z = z(t−1). For each i ∈ {τ(1), . . . , τ(N)}, resample zi as follows:

(a) For each of the K existing clusters, determine the predictive likelihood

fk(xi) = p(xi | {xj | zj = k, j 6= i} , λ)

This likelihood can be computed from cached sufficient statistics via Prop. 2.1.4.
Also determine the likelihood fk̄(xi) of a potential new cluster k̄ via eq. (2.189).

(b) Sample a new cluster assignment zi from the following (K + 1)–dim. multinomial:

zi ∼
1

Zi

(
αfk̄(xi)δ(zi, k̄) +

K∑

k=1

N−i
k fk(xi)δ(zi, k)

)
Zi = αfk̄(xi) +

K∑

k=1

N−i
k fk(xi)

N−i
k is the number of other observations currently assigned to cluster k.

(c) Update cached sufficient statistics to reflect the assignment of xi to cluster zi. If
zi = k̄, create a new cluster and increment K.

3. Set z(t) = z. Optionally, mixture parameters for the K currently instantiated clusters
may be sampled as in step 3 of Alg. 2.1.

4. If any current clusters are empty (Nk = 0), remove them and decrement K accordingly.

5. If α ∼ Gamma(a, b), sample α(t) ∼ p(α | K,N, a, b) via auxiliary variable methods [76].

Algorithm 2.3. Rao–Blackwellized Gibbs sampler for an infinite, Dirichlet process mixture model, as
defined in Fig. 2.24. Each iteration sequentially resamples the cluster assignments for all N observa-
tions x = {xi}

N
i=1 in a different random order. Mixture parameters are integrated out of the sampling

recursion using cached sufficient statistics. These statistics are stored in a dynamically resized list of
those clusters to which observations are currently assigned.

associated parameters. Dirichlet processes thus effectively allow integrated exploration
of models with different complexity. Predictions based on these samples average over
mixtures of varying size, avoiding the difficulties inherent in selecting a single model.
The computational cost of each sampling update is proportional to the number of cur-
rently instantiated clusters K(t), and thus varies randomly from iteration to iteration.
Asymptotically, K → α log(N) as N → ∞ (see [10, 233]), so each iteration of Alg. 2.3
requires approximately O(αN log(N)) operations to resample all assignments. For prac-
tical datasets, however, the number of instantiated clusters depends substantially on
the structure and alignment of the given observations.

While predictions derived from Dirichlet process mixtures are typically robust to the
concentration parameter α, the number K of clusters with significant posterior proba-
bility shows greater sensitivity [76]. In many applications, it is therefore useful to choose
a weakly informative prior for α, and sample from its posterior while learning cluster
parameters. If α ∼ Gamma(a, b) is assigned a gamma prior [107], its posterior is a sim-
ple function of K, and samples are easily drawn via an auxiliary variable method [76].
Incorporating this technique in our Gibbs sampler (Alg. 2.3, step 5), we empirically
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find that it converges more reliably, and matches the performance of procedures which
tune α via computationally demanding cross–validation.

In Fig. 2.26, we use the Gibbs sampler of Alg. 2.3 to fit a Dirichlet process mix-
ture of Gaussians to N = 300 two–dimensional observations. Placing a vague gamma
prior α ∼ Gamma(0.2, 0.1) on the concentration parameter, initial iterations frequently
create and delete mixture components. However, the sampler quickly stabilizes (see
Fig. 2.27), and discovers that with high probability the data was generated by K = 4
Gaussians. Fig. 2.27 also compares this Dirichlet process model to a 4–component mix-
ture estimated via the Rao–Blackwellized sampler of Alg. 2.2. Despite having to search
over mixtures of varying order, the Dirichlet process sampler typically converges faster.
In particular, by creating redundant clusters in early iterations, it avoids local optima
which trap the 4–component Gibbs sampler. This behavior is reminiscent of methods
which iteratively prune clusters from finite mixtures [87], but arises directly from the
Dirichlet process prior rather than complexity–based model selection criteria.

An Infinite Limit of Finite Mixtures

The graphical representation of the Dirichlet process mixture model (see Fig. 2.24)
exhibits striking similarities to the finite, K–component mixture model of Fig. 2.9.
In this section, we show that the Dirichlet process is indeed the limit as K → ∞ of a
particular sequence of finite Dirichlet distributions. This result provides intuition about
the assumptions and biases inherent in Dirichlet processes, and leads to alternative
computational methods for Dirichlet process mixtures.

As in Sec. 2.2.4, we begin by placing a symmetric Dirichlet prior, with precision α,
on the weights π assigned to the K components of a finite mixture model:

(π1, . . . , πK) ∼ Dir
( α

K
, . . . ,

α

K

)
(2.190)

Consider the Rao–Blackwellized Gibbs sampler for this finite mixture, as summarized
in Alg. 2.2. Given cluster assignments z\i for all observations except xi, the Dirichlet
prior implies the following predictive distribution (see eq. (2.162)):

p(zi = k | z\i, α) =
N−i

k + α/K

α + N − 1
N−i

k =
∑

j 6=i

δ(zj , k) (2.191)

In the limit as K → ∞ with fixed precision α, the predictive probability of clusters k
to which observations are assigned (N−i

k > 0) approaches

lim
K→∞

p(zi = k | z\i, α) =
N−i

k

α + N − 1
(2.192)

Similarly, the probability of any particular unoccupied cluster approaches zero as K
becomes large. However, the total probability assigned to all unoccupied clusters is



log p(x | π, θ) = −462.25 log p(x | π, θ) = −399.82

log p(x | π, θ) = −398.32 log p(x | π, θ) = −399.08

log p(x | π, θ) = −397.67 log p(x | π, θ) = −396.71

Figure 2.26. Learning a mixture of Gaussians using the Dirichlet process Gibbs sampler of Alg. 2.3.
Columns show the parameters of clusters currently assigned to observations, and corresponding data
log–likelihoods, after T=2 (top), T=10 (middle), and T=50 (bottom) iterations from two initializations.
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Figure 2.27. Comparison of Rao–Blackwellized Gibbs samplers for a Dirichlet process mixture
(Alg. 2.3, dark blue) and a finite, 4–component mixture (Alg. 2.2, light red). We compare data log–
likelihoods at each of 1000 iterations for the single N = 300 point dataset of Fig. 2.26. Top left:

Log–likelihood sequences for 20 different random initializations of each algorithm. Top Right: From
100 different random initializations, we show the median (solid), 0.25 and 0.75 quantiles (thick dashed),
and 0.05 and 0.95 quantiles (thin dashed) of the resulting log–likelihood sequences. Bottom: Num-
ber of mixture components with at least 2% of the probability mass at each iteration (left, intensity
proportional to posterior probability), and averaging across the final 900 iterations (right).

positive, and determined by the complement of existing cluster weights as follows:

p(zi 6= zj for all j 6= i | z\i, α) = 1 −
∑

k|N−i
k

>0

p(zi = k | z\i, α) (2.193)

lim
K→∞

p(zi 6= zj for all j 6= i | z\i, α) = 1 −
∑

k

N−i
k

α + N − 1
=

α

α + N − 1
(2.194)

Note that if zi is not assigned to an occupied cluster, it must be associated with a new
cluster k̄. Comparing to eq. (2.187), we then see that the limits of eqs. (2.192, 2.194)
are equivalent to the predictive distributions implied by the Chinese restaurant process.
The Dirichlet process Gibbs sampler of Alg. 2.3 can thus be directly derived as an
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infinite limit of Alg. 2.2, without explicitly invoking the theory underlying Dirichlet
processes [221, 237].

The relationships suggested by the preceding arguments can be made more precise.
In particular, a combinatorial analysis [121, 150] shows that the finite Dirichlet prior of
eq. (2.190) induces a joint distribution on partitions z which approaches the Chinese
restaurant process as K → ∞. In this limit, predictions based on the finite mixture
model also approach those of the corresponding Dirichlet process.

Theorem 2.5.5. Let H denote a probability measure on Θ, and f : Θ → R a measurable
function which is integrable with respect to H. Consider the K–component discrete
distribution GK, as in eq. (2.83), corresponding to a mixture model with weights following
the finite Dirichlet prior Dir(α) of eq. (2.190). As K → ∞, expectations with respect to
GK then converge in distribution to a corresponding Dirichlet process:

∫

Θ
f(θ) dGK(θ)

D−→
∫

Θ
f(θ) dG(θ) G ∼ DP(α, H) (2.195)

Proof. This result was derived via a stick–breaking representation of the Dirichlet pro-
cess by Ishwaran and Zarepour (see Thm. 2 of [150]).

Given the correspondence implied by Thm. 2.5.5, the mixture weights (π1, . . . , πK) of
eq. (2.190) should, in some sense, converge to π ∼ GEM(α) as K → ∞. As discussed
in Sec. 2.1.3, finite Dirichlet distributions with small precisions are biased towards
sparse multinomial distributions (see Fig. 2.1). It can be shown that the stick–breaking
construction of Thm. 2.5.3 induces a random, size–biased permutation [233] in which the
largest weights are typically assigned to earlier clusters (for examples, see Fig. 2.22). By
rank ordering π ∼ GEM(α), we recover the Poisson–Dirichlet distribution [233, 234],
which is also the limiting distribution of reordered, finite Dirichlet samples [168].

Given the limiting behavior of finite mixture models with Dirichlet priors as in
eq. (2.190), they provide a natural mechanism for approximating Dirichlet processes.
Indeed, a Gibbs sampler similar to those of Algs. 2.1 and 2.2 has been suggested for
approximate learning of Dirichlet process mixtures [148]. In general, however, this
finite mixture approximation converges slowly with K, and a large number of poten-
tial clusters may be required [148, 150]. More accurate approximations, whose error
decreases exponentially with K, are obtained by truncating the stick–breaking repre-
sentation of Thm. 2.5.3. This approach has been used to develop alternative Gibbs
samplers [147, 148], as well as a deterministic, variational approximation [29] which
adapts the mean field method described in Sec. 2.3.1.

Model Selection and Consistency

Dirichlet process mixture models provide a popular Bayesian alternative to the kernel
density estimators described in Sec. 2.4.2. In such applications, clusters are usually
associated with Gaussian kernels [76, 187]. The base measure H(λ) may then be used to
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encode domain–specific knowledge about the observations’ expected location, scale, and
variability. For target distributions with sufficiently small tail probabilities, Dirichlet
process mixtures of Gaussians provide strongly consistent density estimates [112, 113].
In addition, by allowing posterior covariances to vary across clusters, Dirichlet processes
often provide more robust predictions than classic, asymptotically motivated bandwidth
selection schemes [263]. Importantly, the Gibbs sampler of Alg. 2.3 also characterizes
the posterior uncertainty in the estimated density.

Many other applications of Dirichlet process mixtures involve data generated from
some finite, but unknown, number of latent factors [76, 121, 149, 289]. In such cases, the
parameters corresponding to different clusters are typically of interest. Several differ-
ent complexity criteria [87, 203, 314], including Bayesian formulations which optimize
predictive likelihoods [46], have been proposed in this context. For applications involv-
ing high–dimensional data, however, there may be inherent ambiguities which prevent
reliable selection of a single “best” model. Dirichlet process mixtures avoid this issue
via an infinite model encompassing finite mixtures of varying order. Mild conditions
then guarantee that the Dirichlet process posterior, as characterized by Prop. 2.5.1,
asymptotically concentrates on the true set of finite mixture parameters [149].

Other models for finite mixtures place an explicit prior on the number of clus-
ters K, and then separately parameterize mixtures of each order [121, 208, 243]. When
mixture weights follow finite Dirichlet distributions, this approach produces the Dirich-
let/multinomial allocation (DMA) model [121]. In some applications, complex priors
p(K) can then be used to encode detailed prior knowledge. However, when less is known
about the underlying generative process, these priors involve nuisance parameters which
are difficult to specify uninformatively [243, 272]. Indeed, in some applications where
the Dirichlet process has favorable asymptotic properties, apparently uninformative
finite Dirichlet priors lead to inconsistent parameter estimates [149].

Computational considerations also practically motivate Dirichlet process priors.
DMA models are typically learned via Monte Carlo methods which use Metropolis–
Hastings moves to step between models of varying order [243, 272]. Such algorithms,
including variants of reversible jump MCMC [9, 243], require proposal distributions
which split, merge, and otherwise transform cluster parameters. Effective proposals
must usually be tuned to particular applications, and can be difficult to formulate
for hierarchical models of complex, high–dimensional data. While split–merge MCMC
methods are readily generalized to Dirichlet process mixtures [55, 121, 151], the simple
but effective collapsed Gibbs sampler (Alg. 2.3) has no direct analog for DMA models.
For realistic datasets, differences between Dirichlet process and DMA models are often
small, with Dirichlet processes exhibiting a slight posterior bias towards mixtures with
a few additional, low–weight components [121].

Finally, we note that while Bayesian estimators derived from finite–dimensional
models are usually consistent, the asymptotic behavior of nonparametric methods is
more subtle [68, 113, 160, 317]. For example, Diaconis and Freedman [68] considered a
semiparametric model in which a latent location parameter θ ∼ N (0, Λ), and the un-
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known measurement distribution underlying independent observations has a Dirichlet
process prior DP(α, H). They demonstrated that a heavy–tailed, Student–t base mea-
sure H may then lead to inconsistent estimates of θ. As predicted by more recent
theoretical results [113], consistency is regained for log–concave base measures. This
and other examples [68, 317] demonstrate the need for careful empirical and, where
possible, theoretical validation of nonparametric methods.

¥ 2.5.4 Dependent Dirichlet Processes

Many applications involve complex, structured datasets, and cannot be directly posed
as standard density estimation problems. In this section, we describe a framework
for dependent Dirichlet processes (DDPs) [191] which extends nonparametric Bayesian
methods to a rich family of hierarchical models.

Consider a continuous or discrete covariate space Ω capturing the temporal, spatial,
or categorical structure associated with a given dataset. As in many hierarchical mod-
els, we associate each ω ∈ Ω with a latent parameter θ(ω), whose marginal distribution
equals Gω. Let θ = {θ(ω) | ω ∈ Ω}, θ ∈ Θ, denote a global configuration of the param-
eters. We would like to design a flexible, nonparametric prior for the joint distribution
G(θ). Generalizing the stick–breaking representation of Thm. 2.5.3, a DDP prior takes
the following form:

G(θ(ω)) =
∞∑

k=1

πk(ω)δ(θ(ω), θk(ω)) θk ∼ H (2.196)

In this construction, the base measure H is a stochastic process on Θ. For example, if
parameters θk(ω) are assigned Gaussian marginals Hω, a Gaussian process provides a
natural joint measure [105]. The infinite set of mixture weights then follow a generalized
stick–breaking process:

πk(ω) = βk(ω)
k−1∏

`=1

(1 − β`(ω)) βk ∼ B (2.197)

If the stochastic process B is chosen so that its marginals βk(ω) ∼ Beta(1, α), Thm. 2.5.3
shows that Gω ∼ DP(α, Hω). However, for appropriately chosen H and B, there will be
interesting dependencies in the joint distribution G, implicitly coupling the measures
for parameters θ(ω) associated with different covariates. See MacEachern [191] for a
discussion of conditions ensuring the existence of DDP models.

In the simplest case, the stick–breaking weights of eq. (2.197) are set to the same,
constant value βk(ω) = β̄k ∼ Beta(1, α) for all covariates ω ∈ Ω. The resulting DDP
models capture dependency by sampling joint parameters θk from an appropriately
chosen stochastic process [60, 105, 191]. More generally, B may be designed to encourage
mixture weights which vary to capture local features of the covariate space [122, 342]. In
the following section, we describe a model which uses hierarchically dependent Dirichlet
processes to choose weights distinguishing several groups of observations.
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Hierarchical Dirichlet Processes

As in Sec. 2.2.4, consider a dataset with J related groups x = (x1, . . . ,xJ), where
xj = (xj1, . . . , xjNj

) contains Nj observations. Just as the LDA model [31] shares a
finite set of clusters among such groups (see Fig. 2.11), the hierarchical Dirichlet process
(HDP) [288, 289] provides a nonparametric approach to sharing infinite mixtures.

To construct an HDP, a global probability measure G0 ∼ DP(γ, H) is first used to
define a set of shared clusters:

G0(θ) =
∞∑

k=1

βkδ(θ, θk)
β ∼ GEM(γ)

θk ∼ H(λ) k = 1, 2, . . .
(2.198)

Group–specific mixture distributions Gj ∼ DP(α, G0) are then independently sampled
from a Dirichlet process with discrete base measure G0, so that

Gj(θ) =
∞∑

t=1

π̃jtδ(θ, θ̃jt)
π̃j ∼ GEM(α)

θ̃jt ∼ G0 t = 1, 2, . . .
(2.199)

Each local cluster in group j has parameters θ̃jt copied from some global cluster θkjt
,

which we indicate by kjt ∼ β. As summarized in the graph of Fig. 2.28, data points in
group j are then independently sampled according to this parameter distribution:

θ̄ji ∼ Gj

xji ∼ F (θ̄ji)
(2.200)

For computational convenience, we typically define F (θ) to be an appropriate expo-
nential family, and H(λ) a corresponding conjugate prior. As with standard mixtures,
eq. (2.200) can be equivalently expressed via a discrete variable tji indicating the cluster
associated with the ith observation:

tji ∼ π̃j

xji ∼ F (θ̃jtji
)

(2.201)

Fig. 2.29 shows an alternative graphical representation of the HDP, based on these
explicit assignments of observations to local clusters, and local clusters to global clusters.

Because G0 is discrete, each group j may create several different copies θ̃jt of the
same global cluster θk. Aggregating the probabilities assigned to these copies, we can
directly express Gj in terms of the distinct global cluster parameters:

Gj(θ) =
∞∑

k=1

πjkδ(θ, θk) πjk =
∑

t|kjt=k

π̃jt (2.202)

Groups then reuse a common set of global clusters in different proportions. Using
Thm. 2.5.1, it can be shown that πj ∼ DP(α,β), where β and πj are interpreted as
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Figure 2.28. Directed graphical representations of a hierarchical Dirichlet process (HDP) mixture
model. Global cluster weights β ∼ GEM(γ) follow a stick–breaking process, while cluster parameters
are assigned independent priors θk ∼ H(λ). Left: Explicit stick–breaking representation, in which
each group reuses the global clusters with weights πj ∼ DP(α, β). zji ∼ πj indicates the cluster
that generates xji ∼ F (θzji). Right: Alternative distributional form, in which G0 ∼ DP(γ, H) is an
infinite discrete distribution on Θ, and Gj ∼ DP(α, G0) a reweighted, group–specific distribution.
θ̄ji ∼ Gj are then the parameters of the cluster that generates xji ∼ F (θ̄ji). We illustrate with a
shared, infinite Gaussian mixture, where cluster variances are known (bottom) and H(λ) is a Gaussian
prior on cluster means (top). Sampled cluster means θ̄j1, θ̄j2, and corresponding Gaussians, are shown
for two observations xj1, xj2 in each of two groups G1, G2.

measures on the positive integers [289]. Thus, β determines the average weight of local
clusters (E[πjk] = βk), while α controls the variability of cluster weights across groups.
Note that eq. (2.202) suggests the alternative graphical model of Fig. 2.28, in which
zji ∼ πj directly indicates the global cluster associated with xji. In contrast, Fig. 2.29
indirectly determines global cluster assignments via local clusters, taking zji = kjtji

.
Comparing these representations to Fig. 2.11, we see that HDPs share clusters as

in the LDA model, but remove the need for model order selection. In terms of the
DDP framework, the global measure G0 provides a particular, convenient mechanism
for inducing dependencies among the mixture weights in different groups. Note that
the discreteness of G0 plays a critical role in this construction. If, for example, we had
instead taken Gj ∼ DP(α, H) with H continuous, the stick–breaking construction of
Thm. 2.5.3 shows that groups would learn independent sets of disjoint clusters.

Extending the analogy of Fig. 2.23, we may alternatively formulate the HDP rep-
resentation of Fig. 2.29 in terms of a Chinese restaurant franchise [289]. In this inter-
pretation, each group defines a separate restaurant in which customers (observations)
xji sit at tables (clusters) tji. Each table shares a single dish (parameter) θ̃t, which is
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Figure 2.29. Chinese restaurant franchise representation of the HDP model of Fig. 2.28. Left: Global
cluster parameters are assigned independent priors θk ∼ H(λ), and reused by groups with frequencies
β ∼ GEM(γ). Each group j has infinitely many local clusters (tables) t, which are associated with a
single global cluster kjt ∼ β. Observations (customers) xji are independently assigned to some table
tji ∼ eπj , and thus indirectly associated with the global cluster (dish) θzji , where zji = kjtji . Right:

Example in which a franchise menu with dishes θk (squares, center) is shared among tables (circles, top
and bottom) in two different restaurants (groups). All customers (diamonds) seated at a given table
share the same dish (global cluster parameter).

ordered from a menu G0 shared among restaurants (groups). As before, let kjt indicate
the global parameter θkjt

assigned to table t in group j, and kj the parameters for all
of that group’s tables. We may then integrate over G0 and Gj (as in eq. (2.181)) to
find the conditional distributions of these indicator variables:

p(tji | tj1, . . . , tji−1, α) ∝
∑

t

Njtδ(tji, t) + αδ(tji, t̄) (2.203)

p(kjt | k1, . . . ,kj−1, kj1, . . . , kjt−1, γ) ∝
∑

k

Mkδ(kjt, k) + γδ(kjt, k̄) (2.204)

Here, Mk is the number of tables previously assigned to θk, and Njt the number of
customers already seated at the tth table in group j. As before, customers prefer tables t
at which many customers are already seated (eq. (2.203)), but sometimes choose a new
table t̄. Each new table is assigned a dish kjt̄ according to eq. (2.204). Popular dishes
are more likely to be ordered, but a new dish θk̄ ∼ H may also be selected.

The stick–breaking (Fig. 2.28) and Chinese restaurant franchise (Fig. 2.29) repre-
sentations provide complementary perspectives on the HDP. In particular, they have
each been used to design Monte Carlo methods which infer shared clusters from training
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data [289]. In Chap. 5, we describe and extend a Gibbs sampler based on the Chinese
restaurant franchise, generalizing the Dirichlet process sampler of Alg. 2.3.

Temporal and Spatial Processes

Models derived from, or related to, the DDP framework have been applied to several
application domains. For example, an analysis of densities [296, 297] approach has
been used to determine multiple related density estimates. This model is similar to
the HDP of Fig. 2.28, except that the base measure G0 is convolved with a Gaussian
kernel to construct a continuous, global density estimate. Alternatively, for applications
involving observed covariates, the DDP construction of eq. (2.196) has been used to
design nonparametric models in which each cluster parameterizes a standard, Gaussian
ANOVA model [60]. This method more robustly describes datasets which mix several
different global correlation structures.

Related methods have been used to model temporal processes. In particular, time–
sensitive Dirichlet process mixtures [342] consider applications where each observation
has an associated time stamp. A generalization of the Chinese restaurant process
then encourages observations at similar times to be associated with the same cluster.
Dirichlet processes have also been used to develop an infinite hidden Markov model [16],
avoiding explicit selection of a finite set of discrete states. The infinite HMM can be
seen as a special case of the HDP, in which the global measure G0 is used to couple the
transition distributions associated with different latent states [289].

Gaussian processes provide a standard, widely used framework for modeling spatial
data [285, 330]. Generalizing this approach, dependent Dirichlet processes have been
used to construct infinite mixtures of Gaussian processes [105]. The marginal distri-
bution at each spatial location is then a Dirichlet process mixture of Gaussians, but
the Gaussian parameters associated with nearby sites are correlated. Like DDP models
based on ANOVA clusters [60], these mixtures of Gaussian processes implicitly assume
absolute spatial locations are statistically meaningful, and require replicated observa-
tions at identical sites. In Chap. 6, we develop a transformed Dirichlet process [282]
adapted to datasets with different forms of spatial structure.


