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Schedule of Classes

Class Lecture Discussion Homework

Number Date

L0 Aug 28 Organisation —
L1 Sept 02 Rigid Body Motion L0,1 HW1
L2 Sept 04 Rotation Matrices — L1-3
L3 Sept 09 Homogenous Coordinates L2,3
L4 Sept 11 Exponential Coordinates — —
L5 Sept 16 Forward Kinematics L4,5 HW2
L6 Sept 18 2D Vision — L3-5
L7 Sept 23 3D Vision Review
L8 Sept 25 Rigid Body Velocities — —
L9 Sept 30 Inverse Kinematics HW1,2
L10 Oct 02 Review — —
L11 Oct 07 Midterm 1 L1-5 L6,7 HW3
L12 Oct 09 Jacobians — L8-12
L13 Oct 14 Path Planning Intro L8,15
L14 Oct 16 Path Planning Algorithms — —
L15 Oct 21 Force Wrenches L16,17 HW4
L16 Oct 23 Inertial Properties — L15-18
L17 Oct 28 Newtonian Dynamics L18
L18 Oct 30 Lagrangian Dynamics —
L19 Nov 04 Dynamics of Open Chains Review
L20 Nov 06 Dynamics of Open Chains —
L21 Nov 11 Holiday HW3,4 —
L22 Nov 13 Review —
L23 Nov 18 Midterm 2 L8-12,15-18 Projects
L24 Nov 20 Feedback Control —
L25 Nov 25 Medical Robotics Projects
L26 Nov 27 Holiday —
L27 Dec 02 Projects Projects
L28 Dec 04 Project Reviews —
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Course Information

Instructors

Role Name Email Office Hours Location

Professor Ruzena Bajcsy bajcsy@eecs MW 0900-1000 719 SDH
GSI Aaron Bestick abestick@eecs - -
GSI Austin Buchan abuchan@eecs - -
GSI Robert Matthew rpmatthew@eecs M 10-11, 15-16 337A Cory

Lectures

Day Time Instructor Location

Tu Th 1400-1530 Ruzena Bajcsy 521 Cory

Labs

Day Time Instructor Location

W 1100-1400 Austin Buchan 119 Cory
W 1400-1700 Austin Buchan 119 Cory
Th 1100-1400 Aaron Bestick 119 Cory
F 1200-1500 Aaron Bestick 119 Cory

Discussions

Day Time Instructor Location

Tu 1000-1100 Robert Matthew 293 Cory
W 1000-1100 Robert Matthew 247 Cory
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Grading:

Labs 20%

There will be a total of eight labs spaced over the start of the semester. Labs will ask you
to complete a number of exercises, including derivation of equations as implementation
in Python, ROS, OpenCV for use with cameras, the Baxter robot and other hardware.
Performance in the labs will be based on both attendance and a lab report.

Homeworks 20%

The timetable has been structured so that you have at least one dedicated discussion
section before the deadline, and to ensure that you get a graded assignment in time for
the midterms.

No extensions will be allowed.
Please plan accordingly.

Homework Set Date Due Date Return Date

1 Aug 29 Sept 12 Sept 18
2 Sept 12 Sept 26 Oct 02
3 Oct 10 Oct 24 Oct 30
4 Oct 24 Nov 7 Nov 13

The homework grade has two components:

Solutions: 40 points Homework solutions should be clear and complete, demon-
strate important intermediate steps, and provide references to the textbook or out-
side materials as appropriate. Students may work together on the assignments, but
each individual must write their own solutions independently.

Presentation: 10 points The homework writeup must be legibly hand written or
typeset and free of excessive erasing, scratched-out text, etc. We urge students
to solve the homework on scratch paper, then copy completed solutions onto new
sheets of paper.

Questions about grading should be sent to the GSIs.
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Exams 30%

Before each exam, you should have your relevant homeworks returned, and both an
inclass review and dedicated discussion section.
Please let us know in advance if you are unable to make any of the dates below or
require any special arrangements.

Date Topics Location

Midterm 1 Oct 07 Lecture 1-5 Inclass
Midterm 2 Nov 18 Lecture 8-12,15-18 Inclass
Final None

Final Project 30%

A substantial part of your grade will depend on the final group project. Groups com-
prise of 2 or 3 people, and can include people outside of your lab group.
The choice of project topic is up to you, but the final project must integrate perception,
planning, and action in some non-trivial way.
There are three milestone deliverables for the projects. The first is a two side project
brief that includes the team, the task and an outline of your project. Details on required
parts and materials and initial analysis of the problem is required.
The bulk of the project is allocated later in the semester. Projects will be graded based
on a presentation & Demo during dead week, and a final report. The final report will
be in the form of a website that will go live on the final day of the semester.

Deliverable Deadline Weighting

Project Brief Oct 16 5 %
Presentation & Demo Dec 12 10 %
Final Report (Website) Dec 19 15 %

Students with special requirements

If you have been issued a letter of accommodation from the Disabled Students Program
(DSP), please contact either Professor Bajcsy or a GSI as soon as possible to work out
the necessary arrangements. If you need an accommodation and have not yet seen a
Disability Specialist at the DSP, please do so as soon as possible.
If you would need any assistance in the event of an emergency evacuation of the build-
ing, the DSP recommends that you make a plan for this in advance. (Contact the DSP
access specialist at 643-6456.)
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Discussions

Discussion sections are designed to provide supplement the lectures by highlighting
key ideas and providing sample questions. Attendance is not mandatory, though it is
recommended. Class participation is encouraged and questions welcome.

Labs

Laboratory sections are used to provide hands on experience with some the techniques
presented in the course. Attendance is mandatory and is limited to students registered
for that particular lab section. This restriction is due to limited resources in the labs.
The lab grade has three components:

Participation: 10 points Students are expected to exhibit friendly, active involve-
ment in the lab, and to keep the laboratory facilities clean and functional throughout
the semester.

Tasks, questions, and code: 30 points Complete each task specified in the lab
assignment, answer lab questions thoughtfully, and provide supporting mathemat-
ics and references where appropriate.

Report: 10 points The laboratory writeup should be a self-contained document
providing detail about each task and question. It should be written in complete
sentences with full questions statements; however, information about the lab setup
and motivation is unnecessary. All figures need clear captions, legends, and labels,
and must be readable when printed in grayscale. Matlab code should be included
in an appendix.

Questions about grading should be sent to the GSIs.

Conduct

This course aspires to be a safe space for all students regardless of age, sex, gender,
race, nationality, ability etc. Any discriminatory behavior, or failure to respect personal
boundaries will result in removal from the course. If you feel harassed my any member
of the instructional team, a colleague or anyone, bring it to the attention of a trusted
instructor, counselor, or campus police.

UCB Police police.berkeley.edu

Sexual Harassment & Survivor Support survivorsupport.berkeley.edu

University Health Services- Social Services uhs.berkeley.edu

Gender Equity Resource Center geneq.berkeley.edu

Office for the Prevention of Discrimination and Harassment ophd.berkeley.edu



Introduction

These notes are designed to act as a companion to the Introduction to Robotics course
and the course text A Mathematical Introduction to Robotic Manipulation. The notes
are still under development and will be updated regularly. There will be errors, flaws
and issues with the way the course materials are presented. Any comments, changes,
requests and improvements are greatly welcome.
These notes are based on the invaluable notes on Linear Systems (221A) by Claire
Tomlin and the hand written tome of Robotics notes by Dan Calderone. Without
these people, these notes would not exist.
Where possible I have used examples taken from a number of seminal mathematical,
robotics and dynamics textbooks. They are listed in the bibliography, and referenced
throughout.
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Chapter 1

Rotations (Chapter 2.2 in MLS)

1.1 General Rotations

• Rotations describe a transformation between two frames.

• We use the notation RAB to describe the rotation of frame B in frame A.

• Frames and rotations follow the right hand rules.

• Rotations are a mathematical group. Therefore they have a number of nice prop-
erties:

– They are associative: (R1R2)R3 = R1 (R2R3)

– There is an identity element I which satisfies RI = R = IR

– For every rotation R there is a unique inverse rotation R−1 where:
RR−1 = R−1R = I

• Rotations can be be combined in sequence to form new rotation matrices. Given
the rotations of frame B in the A frame (RAB) and the rotation for C in the
B frame (RBC), we can write and expression for the rotation of frame C in A:
RABRBC = RAC .

1.2 Rotation Matrices

• Rotation matrices have two key properties, they are orthonormal and orthogonal
with a determinant of 1. (Do not worry if this is new to you, there is a quick
review in Appendix A.1).

• Matrices that satisfy these properties are called Special Orthogonal Group (SO).

• Rotations in 2D are characterised by a 2×2 matrix. This is writtenRAB ∈ R2×2.
It is also a member of the Special Orthogonal Matrices 2 ie. RAB ∈ SO(2).

• Rotations in 3D are characterised by a 3×3 matrix. This is writtenRAB ∈ R3×3.
It is also a member of the Special Orthogonal Matrices 3 ie. RAB ∈ SO(3).
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4 CHAPTER 1. ROTATIONS (CHAPTER 2.2 IN MLS)

• The identity identity element I are the I2 and I3 identity matrices.

• As the columns of R are mutually orthonormal, RRT = RTR = I.

• This means that the inverse R−1 for an rotation matrix R is its transpose RT .

1.3 Euler Angles

• Probably the most common way to represent rotations, Euler angles are used to
represent a rotation θ about the basis vectors of a frame (x̂, ŷ, ẑ).

• Each Euler rotation is defined by the axis of the rotation and the angle:

Rx (φ) =

1 0 0
0 cos (φ) −sin (φ)
0 sin (φ) cos (φ)



Ry (β) =

 cos (β) 0 sin (β)
0 1 0

−sin (β) 0 cos (β)



Rz (α) =

cos (α) −sin (α) 0
sin (α) cos (α) 0

0 0 1


• When specifying a combination of Euler Angles, the order of rotation MUST be

given. Rotations are not commutative: R1R2R3 6= R1R3R2.

• Euler angles are not a perfect representation of a rotation matrix. Ambiguities
can arise when axes align. These are called singularities and can present prob-
lems. Singularities arise for ANY three dimensional representation of SO(3).
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1.4 Exponential Coordinates

• Exponential Coordinates represent a rotation as an axis of rotation ω and an
angle of rotation θ:

R (ω, θ) = eω̂θ

where theˆ̇is the ’hat’ operator, a matrix form of the cross product.

• Being a 4 dimensional descriptor of a rotation, it does not experience issues with
singularities.

• We can show how this representation is created via the construction of the Ro-
drigues formula.

Hat Operator

• We use the hat operator as a convenient matrix way of writing a cross product
of two vectors:

a× b = âb

• We define â as:

â =

̂a1a2
a3

 =

 0 −a3 a2
a3 0 −a1
−a2 a1 0


• Note that â is skew symmetric i.e. âT = −â

Rodrigues’ Formula

The derivation of the Rodrigues’ formula is given in chapter 2.2.2 of MLS. We include
the formula here for completeness:

R(ω, θ) = eŵθ = I3 +
ω̂

‖ω‖
sin (‖ω‖ θ) +

ω̂2

‖ω‖2
(1− cos (‖ω‖ θ))

We can also find the exponential representation of any rotation matrix given the ex-
pression:

θ = cos−1
(
trace(R)−1

2

)

ω = 1
2sin(θ)

r32 − r23r13 − r31
r21 − r12


note that if θ = 0 then the definition of ω is arbitrary.
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1.5 Quaternions

• Quaternions are another 4 dimensional representation of rotations.

• A quaternionQ is an extended imaginary vector of the form:

Q = q0 + q1i+ q2j + q3k

with qi ∈ R

• Multiplication is associative and distributive, but NOT commutative.

• The conjugate of a quaternionQ = (q0, q) is writtenQ? = (q0,−q)

• The magnitude of a quaternionQ is ‖Q‖2 = q20 + q21 + q22 + q23

• The inverse of a quaternionQ is written asQ−1 = Q?

‖Q‖2

• The identity quaternion is (1,0)

• Quaternions can be converted into rotations via R = eω̂θ where:

θ = 2cos−1q0 ω =

{
(q1,q2,q3)

sin( θ2 )
if θ 6= 0

0 otherwise



Chapter 2

Rigid Body Motion and Homogeneous
Coordinates

In this chapter we outline the basics of Forward kinematics. We introduce general
transformations between two frames, Homogeneous coordinate notation and how they
can be used to compute the Forward Kinematics of a system.

2.1 General Transformations

In the previous discussion, we looked a pure rotations. These rotations acted as trans-
forms about an common origin point.

qA = RABqB

Let us consider a Rigid Body Transformation between any two frames. This rigid body
motion can be described as two components: a Rotation RAB and a translation pAB .
Now any point in coordinate frame B, qB can be written in coordinate frame A as qA
where:

qA = pAB +RABqB .

where pAB is the translation from the origin in theA coordinate frame to the origin in
the B coordinate frame.
The pair of both a translational component pAB ∈ R3 and a rotation RAB ∈ SO (3)
is known as a configuration. The configuration space is therefore the space of all trans-
lations and rotations combined. More formally, it is the product space betweenR3 and
SO3. This is the Special Euclidean Group(3) denoted SE (3).
We can therefore write the action of any rigid transformation gAB from the B coordi-
nate frame to the A coordinate frame as:

qA = gAB (pAB , RAB , qB)

qA = pAB +RABqB (2.1)

This is quite a cumbersome expression. However, we can simplify it substantially
through the use of Homogeneous Coordinates.
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8 CHAPTER 2. RIGID BODY MOTION AND HOMOGENEOUS COORDINATES

2.2 Homogeneous Coordinates

Homogeneous coordinates allow for operations in SE (3) to be written as matrix op-
erations in R4. This allows the combination of a rotation pAB and RAB to be written
as a single 4× 4 matrix, simplifying calculations. To do this we choose the following
representations for points and vectors in R3.

Points Consider a point qB ∈ R3. We append a 1 to the end of this column vector
to give the homogeneous coordinate representation:

qB =


qB,1
qB,2
qB,3

1

 =

[
qB
1

]
∈ R4

Vectors Vectors are the differences between two points. They will therefore have
the representation:

v = qB − qA =

[
qB − qA

0

]
=


v1
v2
v3
0

 ∈ R4

where we note the 0 in the fourth row.

This notation is consistent with our definitions of points and vectors:

• The sum (and difference) of two vectors is another vector.

• The sum of a point and a vector is a point.

• The difference between two points is a vector.

• The sum of two points has no meaning.

We return out attention to Equation 2.1.

Equation 2.1:
qA = pAB +RABqB

as shown on Page 7

By adopting this homogeneous coordinate
notation, we find we can represent this rigid body transformation as:

qA =

[
qA
1

]
=

[
RAB pAB
0 1

] [
qB
1

]
= gABqB

We call gAB the homogeneous representation of gAB .
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2.3 Forward Kinematics

The Kinematics of a robotic manipulator describes the relationship between the motion
of the joints and the motion of the rigid bodies that make up the manipulator. Forward
Kinematics allows the configuration (position and orientation) of the end effector to
be determined given a description of the joints and the joint angles.
We will restrict our attention (for now) to purely revolute joints, joints which have no
translational component.

Example 2.3.1. Consider a planar two jointed manipulator show in in Figure 2.1.
We consider the origin to be the centre of the world frame, and that joints one and
two each have their own coordinate frame. The positions of the manipulators joints
can be parametrised by pW1 and p12, the positions of joint 1 in the world coordinate
frame, and the position of joint 2 in the first joints coordinate frame. The rotations
about each joint are given by RW1 and R12, the rotation of the first frame in the world
frame, and the rotation of the second frame in the first frame respectively.

Figure 2.1: Cartoon of the two link planar manipulator, with world frame in black,
joints one and two in red and green, and the end-effector in blue.

Equation 2.1:
qA = pAB +RABqB
as shown on Page 7

Consider the position of the end-effector given in frame two q2,E . The coordinates
of this point in the first frame can be written using Equation 2.1 giving:

q1,E = p1,2 +R1,2q2,E

Similarly this can be represented in the world coordinate frame as:

qW,E = pW,1 +RW,1q1,E
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qW,E = pW,1 +RW,1
(
p1,2 +R1,2q2,E

)
qW,E = pW,1 +RW,1p1,2 +RW,1R1,2q2,E (2.2)

This expression can be written in a more compact form using homogeneous coordi-
nates:

qW,E = gW,1g1,2q2,E

qW,E =

[
RW,1 pW,1
0 1

] [
R1,2 p1,2
0 1

] [
q2,E

1

]
qW,E =

[
RW,1R1,2 RW,1p1,2 + pW,1

0 1

] [
q2,E

1

]
qW,E =

[
RW,1R1,2q2,E +RW,1p1,2 + pW,1

1

]
which is the same as the expression shown in Equation 2.2.

Let us parametrise the manipulator as shown in the diagram. We know that both
RW,1 and R1,2 are rotations about the z-axis and therefore have the form:

RW,1 =

cos (θ1) −sin (θ1) 0
sin (θ1) cos (θ1) 0

0 0 1

 R1,2 =

cos (θ2) −sin (θ2) 0
sin (θ2) cos (θ2) 0

0 0 1


similarly, the translation components are written:

pW,1 =

xW,1yW,1
0

 p1,2 =

l10
0

 q2,E =

l20
0


This allows us to write the configuration of the end-effector in the word frame via:

qW,E = gW,1g1,2q2,E

qW,E =


cos (θ1) −sin (θ1) 0 xW,1
sin (θ1) cos (θ1) 0 yW,1

0 0 1 0
0 0 0 1



cos (θ2) −sin (θ2) 0 l1
sin (θ2) cos (θ2) 0 0

0 0 1 0
0 0 0 1



l2
0
0
1



qW,E =


cos (θ1) −sin (θ1) 0 xW,1
sin (θ1) cos (θ1) 0 yW,1

0 0 1 0
0 0 0 1



l2cos (θ2) + l1
l2sin (θ2)

0
1



qW,E =


l2cos (θ1 + θ2) + l1cos (θ1) + xW,1
l2sin (θ1 − θ2) + l1sin (θ1) + yW,1

0
1





Chapter 3

Screw theory, Exponential
Coordinates and Twists

In the past weeks, we have been building our intuition of rigid body motion. We now
extend this intuition by introducing Screw Theory and its application to rigid body
motion and robotics. By doing this we will develop a highly versatile formulation for
Forward Kinematics that can describe joints that both rotate and translate simultane-
ously.

3.1 Screw Theory

Screw theory, and our motivations for using it can be summarised by Chasles Theorem:

Every rigid body motion can be realised by a rotation about an axis combined with a
translation parallel to that axis.

This concept of a rotation and translation about a common axis can be visualised by
any rotational helix. A common example of this is the thread on a screw (hence the
name Screw theory). In Engineering, a screw thread is determined by a pitch, the ratio
of translational motion to rotational motion. To describe the direction that the screw
points, we need an axis that it points along. Finally to describe a point on the screw
we need a magnitude, a measure of distance along the screw that will allow us to find
our location on the helix. Therefore to describe a rigid body motion using a screw, we
need three components: a pitch, axis and magnitude.
Keeping this ’screw’ representation in mind, we will build up the mathematical for-
malism that can be used to create a ’screw’ representation for rigid body motion.

11



12 CHAPTER 3. SCREW THEORY, EXPONENTIAL COORDINATES AND TWISTS

3.2 Exponential Coordinates of Rotation

We start by looking at pure rotation about an axis ω. From mechanics, we can say that
the velocity of a point q that is rotated by a constant unit velocity ω is given by:

q̇ = ω × q (t) (3.1)

This is a differential equation which as the solution:

q (t) = eω̂tq (0) (3.2)

where q (0) is the coordinates of the point at time t = 0.
Note that eω̂t is the matrix exponential and has the form:

eω̂t = I3 +
(ω̂t)

1!
+

(ω̂t)
2

2!
+

(ω̂t)
3

3!
+ . . . (3.3)

If we rotate about our axis for θ units of time, then our point q (0) is transformed by
the matrix exponent eω̂θ. This gives us the expression:

q (θ) = eω̂θq (0)

We see that eω̂θ is a Rotation matrix defined by ω and θ, and rotates a point q (0) to
the new position q (θ). In this manner we define the exponential form of a rotation by:

R (ω, θ) = eω̂θ (3.4)

Using Equation 3.3, we can write this rotation as:

R (ω, θ) = I3 +
θ

1!
ω̂ +

θ2

2!
ω̂2 +

θ3

3!
ω̂3 + . . .

This can be simplified by noting that ω̂ is a skew symmetric matrix and therefore has
the following properties:

ω̂2 = ωωT − ‖ω‖2 I3
ω̂3 = −‖ω‖2 ω̂

We can therefore simplify Equation 3.2 to:

R (ω, θ) = I3 +
θ

1!
ω̂ +

θ2

2!
ω̂2 − ‖ω‖2 θ

3

3!
ω̂ − ‖ω‖2 θ

4

4!
ω̂2 + . . .

R (ω, θ) = I3 +

(
θ

1!
− ‖ω‖2 θ

3

3!
+ . . .

)
ω̂ +

(
θ2

2!
− ‖ω‖2 θ

4

4!
+ . . .

)
ω̂2

R (ω, θ) = I3+

(
θ

1!
− ‖ω‖3 θ

3

3!
+ . . .

)
ω̂

‖ω‖
+

(
‖ω‖2 θ

2

2!
− ‖ω‖4 θ

4

4!
+ . . .

)
ω̂2

‖ω‖2

Using the trigonometric identities:

sin (‖ω‖ θ) = ‖ω‖ θ − (‖ω‖ θ)3

3!
+

(‖ω‖ θ)5

5!
− . . .
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cos (‖ω‖ θ) = 1− (‖ω‖ θ)2

2!
+

(‖ω‖ θ)4

4!
− . . .

we can write

R (ω, θ) = I3 +
ω̂

‖ω‖
sin (‖ω‖ θ) +

ω̂2

‖ω‖2
(1− cos (‖ω‖ θ))

which is Rodrigues’ formula.
Now that we have an exponential relation on for the space of Rotations, SO (3), we
now look for an extension to the space of rotations and translations, the space of rigid
body motion SE (3).

3.3 Exponential Formulation for Rigid Body motion

Rigid body motion can be expressed as a combination of both a rotation and a trans-
lation. We find our exponential formulation for rigid body motion by deriving an ex-
pression for pure rotation and pure translation.

Pure Affine Rotation

We extend our previous derivation by allowing the axis of rotation to be affine- it no
longer has to pass through the origin. Consider the rotation of a point p about an axis
ω. The point q is a point on the axis itself. If we assume that the rotation occurs at
unit velocity, we can write velocity of point p as:

ṗ (t) = ω × (p (t)− q) (3.5)

This can be rewritten as the homogeneous linear equation:[
ṗ (t)

0

]
=

[
ω̂ −ω × q
0 0

] [
p (t)

1

]
We can simplify this expression by setting:

v = −ω × q ξ̂ =

[
ω̂ v
0 0

]
(3.6)

giving us:
˙̄p = ξ̂p̄ (3.7)

The solution of this differential equation is given by:

p̄ (t) = eξ̂tp̄ (0)

Where eξ̂t is the matrix exponential of the 4× 4 matrix ξ̂t. This can be written as:

eξ̂t = I4 +

(
ξ̂t
)1

1!
+

(
ξ̂t
)2

2!
+

(
ξ̂t
)3

3!
+

(
ξ̂t
)4

4!
+ . . . (3.8)

If we take θ to be the total rotation about the axis then we get the find that the transform
for the rotational component is given by:

p̄ (θ) = eξ̂θp̄ (0) (3.9)
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Pure Translation

We now look at the contribution of a pure translational movement. The velocity of a
point p moving along an axis v is written as:

ṗ (t) = v (3.10)

The solution of this equation can therefore be written as:

p̄ (t) = eξ̂tp̄ (0) with ξ̂ =

[
03×3 v
01×3 0

]
(3.11)

General Rigid Body Motion

As we can see, the representation of Rotations and Translations take the form of:

p̄ (θ) = eξ̂θp̄ (0)

where
ξ̂ =

[
ω̂ v
0 0

]
Given this form of ξ̂, we define its vector representation and the ’vee’ ∨ and ’wedge’
∧ operators as:

ξ̂
∨

=

[
ω̂ v
0 0

]∨
=

[
v
ω

]
= ξ

and

ξ∧ =

[
v
ω

]∧
=

[
ω̂ v
0 0

]
= ξ̂

We call this vector ξ ∈ R6×1 a twist. A twist can be used to generate a rigid body
motion via the matrix exponent eξ̂θ.

Differences in Interpretation

It is important to note that there is a subtle difference between the rigid body transform
given by g = eξ̂θ, and the ones created usingRAB and pAB . The rigid body transform
formed from RAB , pAB is a mapping between two coordinate frames. The rigid body
motion found using eξ̂θ however is mappings from an original configuration to another
after a rigid motion is applied: p̄ (θ) = eξ̂θp̄ (0)
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3.4 Relating Twists to Rigid Body Transforms

Given our twist vector, we wish to find an expression for rigid body motion. We look
at two cases- when there is no rotation (i.e. ω = 0) and when there is a rotation.

No Rotation ω = 0

If we have no rotation, then ξ =
[
v 01×3

]T .

Equation 3.9: p̄ (θ) = eξ̂θp̄ (0)

We know that the transformation from
an initial point to a final point is given by Equation 3.9. Using our equation for the
matrix exponential (Equation 3.8, page 13) can be used to simplify this expression.
We can write ξ̂ as :

ξ̂ =

[
03×3 vT

01×3 0

]
We can see that all the higher powers of ξ̂ will be zero. Therefore, we can write eξ̂θ
as:

eξ̂θ = I3 +
1

1!

(
ξ̂θ
)

+
1

2!

(
ξ̂θ
)2

+
1

3!

(
ξ̂θ
)3

+ . . .

eξ̂θ =

[
I3 vθ
0 0

]
Consider the translation p. If we take v = p

‖p‖ and θ = ‖p‖ then:

ξ =

[ p
‖p‖
0

]
ξ̂θ =

[
03 p
0 0

]
eξ̂θ =

[
I3 p
0 0

]
where eξ̂θ is our expected rigid body representation of a translation by p.

With Rotation ω 6= 0

Consider the rigid body motion defined by rotationω and translation v. For our deriva-
tion we assume that ω is a unit vector, normalising if necessary. We wish to find an
expression for ξ after our rigid body transformation. The new twist is denoted as ξ′

and is written as: ξ̂′ = g−1ξ̂g with the rigid body transform:

g =

[
I ω × v
0 1

]
We can therefore write the twist ξ =

[
vT ωT

]T as:

ξ̂′ =

[
I −ω × v
0 1

]−1 [
ω̂ v
0 0

] [
I ω × v
0 1

]
=

[
ω̂ ωωTv
0 0

]
We wish to find an expression for eξ̂θ. By using the relation:

eξ̂θ = e
g
(
ξ̂′θ
)
g−1

= geξ̂
′θg−1 (3.12)
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we see that it is possible to find eξ̂θ by finding an expression for eξ̂′θ. The higher order
terms of the matrix exponent eξ̂′θ can be simplified using:

ω̂ω = ω × ω = 0

which allows us to write:(
ξ̂′
)2

=

[
ω2 0
0 0

]
,

(
ξ̂′
)3

=

[
ω3 0
0 0

]
, . . .

We can therefore write the matrix exponent eξ̂′θas:

eξ̂
′θ = I4 +

1

1!

(
ξ̂θ
)

+
1

2!

(
ξ̂θ
)2

+
1

3!

(
ξ̂θ
)3

+ . . .

eξ̂
′θ =

[
I3 0
0 1

]
+

1

1!

[
ω̂ ωωTv
0 0

]
+

1

2!

[
ω2 0
0 0

]
+

1

3!

[
ω3 0
0 0

]
+ . . .

eξ̂
′θ =

[
eω̂θ ωωTvθ
0 1

]
Plugging this into Equation 3.12 gives us:

eξ̂θ = e
g
(
ξ̂′θ
)
g−1

= geξ̂
′θg−1

eξ̂θ =

[
I ω × v
0 1

] [
eω̂θ ωωTvθ
0 1

] [
I −ω × v
0 1

]
eξ̂θ =

[
I ω × v
0 1

] [
eω̂θ eω̂θ (−ω × v) + ωωTvθ
0 1

]
eξ̂θ =

[
eω̂θ eω̂θ (−ω × v) + ωωTvθ + ω × v
0 1

]

eξ̂θ =

[
eω̂θ

(
I− eω̂θ

)
(ω × v) + ωωTvθ

0 1

]

3.5 Twists and Screws

We now return to our concept of screws. In out twist notation we have two components
ω and v which correspond to the axis of rotation and velocity of a point. We would
like to relate this to our concepts from Screw theory, pitch h, axis l and magnitudeM .

Pitch h The pitch is defined as the distance along the axis between the loops of
the helix. If ω 6= 0, it can be written as:

h =
ωTv

‖ω‖2

and h = +∞ when ω = 0 It can be thought of as the projection of velocity vector
v onto our rotational axis ω.
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Axis l The rotational axis is defined by a direction vector and a point that this
vector passes through. It can be written as:

l =

{{
ω×v
‖ω‖2 + λω : λ ∈ R

}
if ω 6= 0

{0 + λv : λ ∈ R} if ω = 0

We see that the axis runs parallel to ω for the rotational case, and passes through
the point ω×v‖ω‖2 . In the irrotational case, the line is parallel to vector v and passes
through the origin.

Magnitude M The magnitude of the screw is the net rotational component (or
translational if there is no rotation). It is represented by

M =

{
‖ω‖ if ω 6= 0
‖v‖ if ω = 0

By choosing ‖ω‖ = 1 or (‖v‖ = 1), the magnitude of the twist ξ̂θ is written
M = θ.





Chapter 4

Review

Congratulations. If you have made it this far into the reader/course, you have seen the
different methods of computing rotations, rigidbody motion and Forward Kinematics.
However, practice makes perfect. This chapter will cover a number of practice prob-
lems that will test your ability to work with these concepts. Answers are provided at
the end.

19
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4.1 Rotations

Single Rotations

1. a) Write the rotation matrix RAB for a π
6 radian rotation from the A coordi-

nate frame to the B coordinate frame about the X axis.

b) How would a point represented by the vector [1, 2, 3]
T in the B coordinate

frame look in the A coordinate frame?

2. a) Write the rotation matrix RAB for a π
3 radian rotation from the A coordi-

nate frame to the B coordinate frame about the Y axis.

b) How would a point represented by the vector [1, 2, 3]
T in the B coordinate

frame look in the A coordinate frame?

3. a) Write the rotation matrix RAB for a π
2 radian rotation from the A coordi-

nate frame to the B coordinate frame about the Z axis.

b) How would a point represented by the vector [1, 2, 3]
T in the B coordinate

frame look in the A coordinate frame?

4. a) Write the rotation matrix RAB for a π
6 radian rotation from the A coordi-

nate frame to the B coordinate frame about the X axis.

b) How would a point represented by the vector [1, 2, 3]
T in the A coordinate

frame look in the B coordinate frame?

5. a) Write the rotation matrix RAB for a π
6 radian rotation from the A coordi-

nate frame to the B coordinate frame about the X axis.

b) How would a point represented by the vector [1, 2, 3]
T in the B coordinate

frame look in the A coordinate frame?

6. a) Write the rotation matrix RAB for a π
6 radian rotation from the A coordi-

nate frame to the B coordinate frame about the Y axis.

b) How would a point represented by the vector [1, 2, 3]
T in the A coordinate

frame look in the B coordinate frame?

7. a) Write the rotation matrix RAB for a π
6 radian rotation from the A coordi-

nate frame to the B coordinate frame about the Y axis.

b) How would a point represented by the vector [1, 2, 3]
T in the B coordinate

frame look in the A coordinate frame?

8. a) Write the rotation matrix RAB for a π
6 radian rotation from the A coordi-

nate frame to the B coordinate frame about the axis given by the vector
[1, 0, 0]

T .

b) How would a point represented by the vector [1, 2, 3]
T in the B coordinate

frame look in the A coordinate frame?
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9. a) Write the rotation matrix RAB for a π
3 radian rotation from the A coordi-

nate frame to the B coordinate frame about the axis given by the vector
[0, 1, 0]

T .

b) How would a point represented by the vector [1, 2, 3]
T in the B coordinate

frame look in the A coordinate frame?

10. a) Write the rotation matrix RAB for a π
2 radian rotation from the A coordi-

nate frame to the B coordinate frame about the axis given by the vector
[0, 0, 1]

T .

b) How would a point represented by the vector [1, 2, 3]
T in the B coordinate

frame look in the A coordinate frame?

11. a) Write the rotation matrix RAB for a π
6 radian rotation from the A coordi-

nate frame to the B coordinate frame about the axis given by the vector
[0, 0, 1]

T .

b) How would a point represented by the vector [1, 2, 3]
T in the A coordinate

frame look in the B coordinate frame?

12. a) Write the rotation matrix RAB for a π
6 radian rotation from the A coordi-

nate frame to the B coordinate frame about the axis given by the vector[√
3

3
,

√
3

3
,

√
3

3

]T
.

b) How would a point represented by the vector [1, 2, 3]
T in the B coordinate

frame look in the A coordinate frame?

13. a) Write the rotation matrix RAB for a π
6 radian rotation from the A coordi-

nate frame to the B coordinate frame about the axis given by the vector
[1, 1, 1]

T .

b) How would a point represented by the vector [1, 2, 3]
T in the B coordinate

frame look in the A coordinate frame?

14. a) Write the rotation matrix RAB for a π
6 radian rotation from the A coordi-

nate frame to the B coordinate frame about the axis given by the vector
[1, 1, 0]

T .

b) How would a point represented by the vector [1, 2, 3]
T in the B coordinate

frame look in the A coordinate frame?

Multiple Rotations

1. a) You are given the rotation matrices: RAB , RBC , RCD. Write an expres-
sion for: RAD.

2. a) You are given the rotation matrices: RAB , RBC , RAD. Write an expres-
sion for: RCD.
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3. a) You are given the rotation matrices: RAB , RBC , RCD. Write an expres-
sion for: RAA.

4. a) You are given the Euler angles [θX , θY , θZ ] inX −Y −Z notation. What
is the corresponding rotation matrix after all these rotations are applied?

5. a) You are given the Euler angles [θX , θY , θZ ] in Z−Y −X notation. What
is the corresponding rotation matrix after all these rotations are applied?

6. a) You are given the Euler angles [θZ , θY , φZ ] inZθ−Y −Zφ notation. What
is the corresponding rotation matrix after all these rotations are applied?

Valid Rotations

1. a) Is the following transformation a valid rotation matrix? If so, prove it, if
not state why.

qA =

1 0 0
0 1 0
0 0 1

 qB
2. a) Is the following transformation a valid rotation matrix? If so, prove it, if

not state why.

qA =

cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 qB
3. a) Is the following transformation a valid rotation matrix? If so, prove it, if

not state why.

qA =

1 0 0
0 2 0
0 0 1

 qB
4. a) Is the following transformation a valid rotation matrix? If so, prove it, if

not state why.

qA =


√
2
2 −

√
2
2 0√

2
2

√
2
2 0

0 0 1

 qB
5. a) Is the following transformation a valid rotation matrix? If so, prove it, if

not state why.

qA =


√
2
2

√
2
2 0√

2
2

√
2
2 0

0 0 1

 qB
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4.2 Rigid body Motion

Single Rigid Body Motion

1. a) Write the homogeneous representation gAB for a rigid body motion com-
prising of a rotation about the X axis by π

6 radians at the point
[
1, 2, 3

]T .

b) How would a the point with coordinates
[
1, 2, 3

]T in the B coordinate
frame be represented in the A coordinate frame?

2. a) Write the homogeneous representation gAB for a rigid body motion com-
prising of a rotation about the Y axis by π

4 radians at the point
[
1, 2, 3

]T .

b) How would a the point with coordinates
[
1, 2, 3

]T in the B coordinate
frame be represented in the A coordinate frame?

3. a) Write the homogeneous representation gAB for a rigid body motion com-

prising of a rotation about the vector
[
0,
√
2
2 ,
√
2
2

]T
by π

6 radians at the

point
[
1, 2, 3

]T .

b) How would a the point with coordinates
[
1, 2, 3

]T in the B coordinate
frame be represented in the A coordinate frame?

4. a) Write the homogeneous representation gAB for a rigid body motion com-
prising of a rotation about the Y axis by π

4 radians at the point
[
1, 0, 0

]T .

b) How would a the point with coordinates
[
1, 2, 3

]T in the A coordinate
frame be represented in the B coordinate frame?

Multiple Rigid Body Motions

1. Consider the two rigid body motions comprising of:

• A rotation of π
2 radians about the Z axis at the point [1, 0, 0]

T in the A
frame which we call gAB .

• A rotation of −π2 radians about the Z axis at the point [1, 0, 0]
T in the B

frame which we call gBC .

a) Write an expression for the rigid body motion gAC .

b) How would a point with the coordinates [1, 2, 3]
T in the C coordinate frame

be represented in the A frame?
c) How would a point with the coordinates [1, 2, 3]

T in the A coordinate frame
be represented in the C frame?

2. Consider the two rigid body motions comprising of:

• A rotation of π
2 radians about the Z axis at the point [1, 0, 0]

T in the A
frame which we call gAB .
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• A rotation of −π2 radians about the Z axis at the point [1, 0, 0]
T in the B

frame which we call gBC .

a) Write an expression for the rigid body motion gCA.

b) How would a point with the coordinates [1, 2, 3]
T in the C coordinate frame

be represented in the A frame?
c) How would a point with the coordinates [1, 2, 3]

T in the A coordinate frame
be represented in the C frame?

4.3 Forward Kinematics

1. Consider the robotic manipulator shown in Figure 4.1.

a) Write the homogeneous transformations, for each joint of the manipulator.
Each transformation should comprise of a rotationR and a translation p.

b) Using these homogeneous transformations, write an expression for the
rigid body transformation that takes the coordinates of a point in the end
effector frame and returns its coordinates in the world frame.

c) Write the twist ξ for each joint in the manipulator, using the following
notation:

gST (θ1, . . . , θn) = eξ̂1θ1 . . . eξ̂nθngST (0)

d) Using these twists, write an expression for the rigid body transformation
that takes the coordinates of a point in the end effector frame and returns
its coordinates in the world frame.

e) The coordinates of a point p are [1, 2, 3]
T in the end effector frame. Com-

pute the coordinates of the point in the world frame, given the kine-
matic parameters: {tx, ty, tz, l0, l1} = {5, 1, 2, 2, 5} and the joint angles:
{θ1} =

{
π
4

}
.

Z
W

T
Z

T
X

T
Y

l
0

l
1

1

Z
E

Figure 4.1: Single Axis Revolute Manipulator
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2. You will need MATLAB/Python to solve this question
Consider the robotic manipulator shown in Figure 4.2.

a) Write the homogeneous transformations, for each joint of the manipulator.
Each transformation should comprise of a rotationR and a translation p.

b) Using these homogeneous transformations, write an expression for the
rigid body transformation that takes the coordinates of a point in the end
effector frame and returns its coordinates in the world frame.

c) Write the twist ξ for each joint in the manipulator, using the following
notation:

gST (θ1, . . . , θn) = eξ̂1θ1 . . . eξ̂nθngST (0)

d) Using these twists, write an expression for the rigid body transformation
that takes the coordinates of a point in the end effector frame and returns
its coordinates in the world frame.

e) The coordinates of a point p are [1, 2, 3]
T in the end effector frame. Com-

pute the coordinates of the point in the world frame, given the kinematic pa-

rameters: {tx, ty, tz, l0, l1,ω1} =

{
4, 5, 6, 2, 5,

[√
2
2 ,
√
2
2 , 0

]T}
and the

joint angles: {θ1} =
{
π
4

}
.

Z
W

T
Z

T
X

T
Y

l
0

l
1

1

Z
E

Figure 4.2: Single Off-Axis Revolute Manipulator

3. Consider the robotic manipulator shown in Figure 4.3.

a) Write the homogeneous transformations, for each joint of the manipulator.
Each transformation should comprise of a rotationR and a translation p.

b) Using these homogeneous transformations, write an expression for the
rigid body transformation that takes the coordinates of a point in the end
effector frame and returns its coordinates in the world frame.

c) Write the twist ξ for each joint in the manipulator, using the following
notation:

gST (θ1, . . . , θn) = eξ̂1θ1 . . . eξ̂nθngST (0)
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d) Using these twists, write an expression for the rigid body transformation
that takes the coordinates of a point in the end effector frame and returns
its coordinates in the world frame.

e) The coordinates of a point p are [1, 2, 3]
T in the end effector frame. Com-

pute the coordinates of the point in the world frame, given the kinematic
parameters: {tx, ty, tz, l0, l1, l2} = {2, 1, 2, 1, 3, 2} and the joint angles:
{θ1, θ2} =

{
π
4 ,−

π
4

}
.

Z
W

T
Z

T
X

T
Y

l
1

1

l
0

2

l
2

Z
E

Figure 4.3: Double Axis Revolute Manipulator

4. Consider the robotic manipulator shown in Figure 4.4.

a) Write the homogeneous transformations, for each joint of the manipulator.
Each transformation should comprise of a rotationR and a translation p.

b) Using these homogeneous transformations, write an expression for the
rigid body transformation that takes the coordinates of a point in the end
effector frame and returns its coordinates in the world frame.

c) Write the twist ξ for each joint in the manipulator, using the following
notation:

gST (θ1, . . . , θn) = eξ̂1θ1 . . . eξ̂nθngST (0)

d) Using these twists, write an expression for the rigid body transformation
that takes the coordinates of a point in the end effector frame and returns
its coordinates in the world frame.

e) The coordinates of a point p are [1, 2, 3]
T in the end effector frame. Com-

pute the coordinates of the point in the world frame, given the kinematic
parameters: {tx, ty, tz, l0, l1, l2, l3} = {2, 1, 2, 1, 3, 2, 3} and the joint an-
gles: {θ1, θ2, θ3} =

{
π
4 ,−

π
8 ,−

π
8

}
.
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Z
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T
Z

T
X

T
Y

l
1

1 2

l
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l
0

3

Z
E

l
3

Figure 4.4: Triple Axis Revolute Manipulator

5. Consider the robotic manipulator shown in Figure 4.5.

a) Write the homogeneous transformations, for each joint of the manipulator.
Each transformation should comprise of a rotationR and a translation p.

b) Using these homogeneous transformations, write an expression for the
rigid body transformation that takes the coordinates of a point in the end
effector frame and returns its coordinates in the world frame.

c) Write the twist ξ for each joint in the manipulator, using the following
notation:

gST (θ1, . . . , θn) = eξ̂1θ1 . . . eξ̂nθngST (0)

d) Using these twists, write an expression for the rigid body transformation
that takes the coordinates of a point in the end effector frame and returns
its coordinates in the world frame.

e) The coordinates of a point p are [1, 2, 3]
T in the end effector frame. Com-

pute the coordinates of the point in the world frame, given the kinematic pa-
rameters: {tx, ty, tz, l0, l1, l2, l3, l4} = {2, 1, 2, 1, 3, 2, 3, 2} and the joint
angles: {θ1, θ2, θ3, θ4} =

{
π
4 ,−

π
8 ,−

π
8 ,−1

}
.
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T
X

T
Y

l
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E

l
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l
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4

Figure 4.5: Triple Axis Revolute, Single Axis Prismatic Manipulator
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6. Consider the robotic manipulator shown in Figure 4.6.

a) Write the homogeneous transformations, for each joint of the manipulator.
Each transformation should comprise of a rotationR and a translation p.

b) Using these homogeneous transformations, write an expression for the
rigid body transformation that takes the coordinates of a point in the end
effector frame and returns its coordinates in the world frame.

c) Write the twist ξ for each joint in the manipulator, using the following
notation:

gST (θ1, . . . , θn) = eξ̂1θ1 . . . eξ̂nθngST (0)

d) Using these twists, write an expression for the rigid body transformation
that takes the coordinates of a point in the end effector frame and returns
its coordinates in the world frame.

e) The coordinates of a point p are [1, 2, 3]
T in the end effector frame. Com-

pute the coordinates of the point in the world frame, given the kine-
matic parameters: {tx, ty, tz, l0, l1} = {2, 1, 2, 1, 3, } and the joint angles:
{θ1, θ2, θ3} =

{
π
4 ,−

π
8 ,−

π
8

}
.

Z
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T
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T
X

T
Y

l
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Z
E
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3

Figure 4.6: Triple Axis Revolute (Spherical) Manipulator
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4.4 Answers

Single Rotations

1. a) 1 0 0
0 0.8660 −0.5
0 0.5 0.866


b) [

1 0.2321 3.5981
]T

2. a)  0.5 0 0.866
0 1 0

−0.866 0 0.5


b) [

3.0981 2 0.634
]T

3. a) 0 −1 0
1 0 0
0 0 1


b) [

−2 1 3
]T

4. a) 1 0 0
0 0.866 −0.5
0 0.5 0.866


b) [

1 3.2321 1.5981
]T

5. a) 1 0 0
0 0.8660 −0.5
0 0.5 0.866


b) [

1 0.2321 3.5981
]T

6. a) 0.8660 0 0.5
0 1 0
−0.5 0 0.8660


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b) [
−0.6340 2 3.0981

]T
7. a) 0.8660 0 0.5

0 1 0
−0.5 0 0.8660


b) [

2.3660 2 2.0981
]T

8. a) 1 0 0
0 0.8660 −0.5
0 0.5 0.8660


b) [

1 0.2321 3.5981
]T

9. a)  0.5 0 0.8660
0 1 0

−0.8660 0 0.5


b) [

3.0981 2 0.6340
]T

10. a) 0 −1 0
1 0 0
0 0 1


b) [

−2 1 3
]T

11. a) 0.8660 −0.5 0
0.5 0.8660 0
0 0 1


b) [

1.8660 1.2321 3
]T

12. a)  0.9107 −0.2440 0.3333
0.3333 0.9107 −0.2440
−0.2440 0.3333 0.9107


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b) [
1.4226 1.4226 3.1547

]T
13. a)  0.7441 −0.3268 0.5837

0.5827 0.7441 −0.3268
−0.3268 0.5827 0.7441


b) [

1.8385 1.0906 3.0709
]T

14. a)  0.8691 0.1309 0.4770
0.1309 0.8691 −0.4770
−0.4770 0.4770 0.7381


b) [

2.5621 0.4379 2.6915
]T

Multiple Rotations

1. RAD = RABRBCRCD

2. RCD = [RABRBC ]
−1
RAD

3. RAA = I3

4. RXY Z = RX (θX)RY (θY )RZ (θZ)

5. RZYX = RZ (θZ)RY (θY )RX (θX)

6. RZY Z = RZ (θZ)RY (θY )RZ (φX)

Valid Rotations

1. Valid rotation: Check Orthonormality, Orthogonality

2. Valid rotation: Check Orthonormality, Orthogonality

3. Not a valid Rotation: Determinant is 2, not orthonormal.

4. Valid rotation: Check Orthonormality, Orthogonality

5. Not a valid Rotation: Not skew symmetric, not orthonormal.
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Single Rigid Body Motion

1. a) 
1 0 0 1
0 0.8660 −0.5 2
0 0.5 0.8660 3
0 0 0 1


b) [

2 2.2321 6.5981
]T

2. a) 
0.7071 0 0.7071 1

0 1 0 2
−0.7071 0 0.7071 3

0 0 0 1


b) [

3.8284 4 4.4142
]T

3. a) 
0.8660 −0.3536 0.3536 1
0.3536 0.9330 0.0670 2
−0.3536 0.0670 0.9330 3

0 0 0 1


b) [

2.2196 4.4205 5.5795
]T

4. a) 
0.7071 0 0.7071 1

0 1 0 0
−0.7071 0 0.7071 0

0 0 0 1


b) [

−2.1213 2 2.1213
]T

Multiple Rigid Body Motion

1. a)
gAC = gABgBC

gAC =


0 −1 0 1
1 0 0 0
0 0 1 0
0 0 0 1




0 1 0 1
−1 0 0 0
0 0 1 0
0 0 0 1

 =


1 0 0 1
0 1 0 1
0 0 1 0
0 0 0 1


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b) [
2 3 3

]T
c) [

0 1 3
]T

2. a)
gCA = gCBgBA = g−1BCg

−1
AB

gCA =


0 −1 0 0
1 0 0 −1
0 0 1 0
0 0 0 1




0 1 0 0
−1 0 0 1
0 0 1 0
0 0 0 1

 =


1 0 0 −1
0 1 0 −1
0 0 1 0
0 0 0 1


b) [

2 3 3
]T

c) [
0 1 3

]T
Forward Kinematics

It should be possible to solve all these problems only using a calculator (except if stated
otherwise).

1. a)

gW1 (θ1) =


cos (θ1) −sin (θ1) 0 Tx
sin (θ1) cos (θ1) 0 Ty

0 0 1 Tz
0 0 0 1


b)

gWE = gW1g1E

gWE =


cos (θ1) −sin (θ1) 0 Tx
sin (θ1) cos (θ1) 0 Ty

0 0 1 Tz
0 0 0 1




1 0 0 l1
0 1 0 0
0 0 1 −l0
0 0 0 1



gWE =


cos (θ1) −sin (θ1) 0 Tx + l1cos (θ1)
sin (θ1) cos (θ1) 0 Ty + l1sin (θ1)

0 0 1 Tz − l0
0 0 0 1


c)

ξ1 =


−

0
0
1

×
TxTy
Tz

0
0
1



 =


Ty
−Tx

0
0
0
1


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d)
gWE (θ1) = eξ̂1θ1gWE (0)

gWE (θ1) =

[
eω̂1θ1

(
I3 − eω̂1θ1

)
(ω1 × v1) + ω1ω

T
1 v1θ1

0 1

]


1 0 0 Tx + l1
0 1 0 Ty
0 0 1 Tz − l0
0 0 0 1



gWE (θ1) =


cos (θ1) −sin (θ1) 0 Tx + l1cos (θ1)
sin (θ1) cos (θ1) 0 Ty + l1sin (θ1)

0 0 1 Tz − l0
0 0 0 1


e) [

7.8284 6.6569 3
]T

2. a)

gW1 (θ1) =

[
RW1 pW1

0 1

]
where

RW1 = I3 +
ω̂

‖ω‖
(sin ‖ω‖ (θ1)) +

ω̂2

‖ω‖2
(1− cos ‖ω‖ (θ1))

pW1 =
[
Tx Ty Tz

]T
b)

gWE = gW1g1E

gWE =

[
RW1 pW1

0 1

]
1 0 0 l1
0 1 0 0
0 0 1 −l0
0 0 0 1



gW1 =

RW1 RW1

 l1
0
−l0

+ pW1

0 1


c)

ξ1 =

−ω ×
TxTy
Tz


ω


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d)
gWE (θ1) = eξ̂1θ1gWE (0)

gWE (θ1) = eξ̂1θ1


1 0 0 Tx + l1
0 1 0 Ty
0 0 1 Tz − l0
0 0 0 1


e) [

9.9142 7.0858 4.7071
]T

3. a)

gW1 (θ1) =


cos (θ1) −sin (θ1) 0 Tx
sin (θ1) cos (θ1) 0 Ty

0 0 1 Tz
0 0 0 1



g12 (θ2) =


cos (θ2) −sin (θ2) 0 l1
sin (θ2) cos (θ2) 0 0

0 0 1 0
0 0 0 1


b)

gWE (θ1, θ2) = gW1 (θ1) g12 (θ2) g2E

gWE (θ1, θ2) = gW1 (θ1) g12 (θ2)


1 0 0 l2
0 1 0 0
0 0 1 −l0
0 0 0 1


c)

ξ1 =


−

0
0
1

×
TxTy
Tz

0
0
1



 =


Ty
−Tx

0
0
0
1



ξ2 =


−

0
0
1

×
Tx + l1

Ty
Tz

0
0
1



 =


Ty

−Tx − l1
0
0
0
1


d)

gWE (θ1, θ2) = eξ̂1θ1eξ̂s2θ2gWE (0)
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gWE (θ1, θ2) = eξ̂1θ1eξ̂2θ2


1 0 0 Tx + l1 + l2
0 1 0 Ty
0 0 1 Tz − l0
0 0 0 1


e) [

7.1213 5.1213 4
]T

4. a)

gW1 (θ1) =


cos (θ1) −sin (θ1) 0 Tx
sin (θ1) cos (θ1) 0 Ty

0 0 1 Tz
0 0 0 1



g12 (θ2) =


cos (θ2) −sin (θ2) 0 l1
sin (θ2) cos (θ2) 0 0

0 0 1 0
0 0 0 1



g23 (θ3) =


cos (θ3) −sin (θ3) 0 l2
sin (θ3) cos (θ3) 0 0

0 0 1 0
0 0 0 1


b)

gWE (θ1, θ2, θ3) = gW1 (θ1) g12 (θ2) g23 (θ3) g3E

gWE (θ1, θ2, θ3) = gW1 (θ1) g12 (θ2) g23 (θ3)


1 0 0 l3
0 1 0 0
0 0 1 −l0
0 0 0 1


c)

ξ1 =


−

0
0
1

×
TxTy
Tz

0
0
1



 =


Ty
−Tx

0
0
0
1



ξ2 =


−

0
0
1

×
Tx + l1

Ty
Tz

0
0
1



 =


Ty

−Tx − l1
0
0
0
1


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ξ3 =


−

0
0
1

×
Tx + l1 + l2

Ty
Tz

0
0
1



 =


Ty

−Tx − l1 − l2
0
0
0
1


d)

gWE (θ1, θ2, θ3) = eξ̂1θ1eξ̂2θ2eξ̂3θ3gWE (0)

gWE (θ1, θ2, θ3) = eξ̂1θ1eξ̂2θ2eξ̂3θ3


1 0 0 Tx + l1 + l2 + l3
0 1 0 Ty
0 0 1 Tz − l0
0 0 0 1


e) [

9.9691 5.8867 4
]T

5. a)

gW1 (θ1) =


cos (θ1) −sin (θ1) 0 Tx
sin (θ1) cos (θ1) 0 Ty

0 0 1 Tz
0 0 0 1



g12 (θ2) =


cos (θ2) −sin (θ2) 0 l1
sin (θ2) cos (θ2) 0 0

0 0 1 0
0 0 0 1



g23 (θ3) =


cos (θ3) −sin (θ3) 0 l2
sin (θ3) cos (θ3) 0 0

0 0 1 0
0 0 0 1



g34 (θ4) =


1 0 0 l3
0 1 0 0
0 0 1 θ4
0 0 0 1


b)

gWE (θ1, θ2, θ3, θ4) = gW1 (θ1) g12 (θ2) g23 (θ3) g34 (θ4) g4E

gWE (θ1, θ2, θ3, θ4) = gW1 (θ1) g12 (θ2) g23 (θ3) g34 (θ4)


1 0 0 l4
0 1 0 0
0 0 1 −l0
0 0 0 1


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c)

ξ1 =


−

0
0
1

×
TxTy
Tz

0
0
1



 =


Ty
−Tx

0
0
0
1



ξ2 =


−

0
0
1

×
Tx + l1

Ty
Tz

0
0
1



 =


Ty

−Tx − l1
0
0
0
1



ξ3 =


−

0
0
1

×
Tx + l1 + l2

Ty
Tz

0
0
1



 =


Ty

−Tx − l1 − l2
0
0
0
1



ξ4 =


0
0
1
0
0
0


d)

gWE (θ1, θ2, θ3, θ4) = eξ̂1θ1eξ̂2θ2eξ̂3θ3eξ̂4θ4gWE (0)

gWE (θ1, θ2, θ3, θ4) = eξ̂1θ1eξ̂2θ2eξ̂3θ3eξ̂4θ4


1 0 0 Tx + l1 + l2 + l3 + l4
0 1 0 Ty
0 0 1 Tz − l0
0 0 0 1


e) [

11.9691 5.8867 3
]T

6. a)

gW1 (θ1) =


cos (θ1) −sin (θ1) 0 Tx
sin (θ1) cos (θ1) 0 Ty

0 0 1 Tz
0 0 0 1



g12 (θ2) =


cos (θ2) 0 sin (θ2) 0

0 1 0 0
−sin (θ2) 0 cos (θ2) 0

0 0 0 1


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g23 (θ3) =


1 0 0 0 0
0 cos (θ3) −sin (θ3) 0 0
0 sin (θ3) cos (θ3) 0 0
0 0 0 1


b)

gWE (θ1, θ2) = gW1 (θ1) g12 (θ2) g23 (θ3) g3E

gWE (θ1, θ2) = gW1 (θ1) g12 (θ2) g23 (θ3)


1 0 0 l1
0 1 0 0
0 0 1 −l0
0 0 0 1


c)

ξ1 =


−

0
0
1

×
TxTy
Tz

0
0
1



 =


Ty
−Tx

0
0
0
1



ξ2 =


−

1
0
0

×
TxTy
Tz

1
0
0



 =


0
Tz
−Ty

1
0
0



ξ3 =


−

0
1
0

×
TxTy
Tz

0
0
1



 =


−Tz

0
Tx
0
1
0


d)

gWE (θ1, θ2, θ3) = eξ̂1θ1eξ̂2θ2eξ̂3θ3eξ̂4θ4gWE (0)

gWE (θ1, θ2, θ3) = eξ̂1θ1eξ̂2θ2eξ̂3θ3eξ̂4θ4


1 0 0 Tx + l1
0 1 0 Ty
0 0 1 Tz − l0
0 0 0 1


e) [

1.8512 5.2927 4.3560
]T
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Appendix A

Linear Algebra Review

There are a number of mathematical tools used in this course. This section acts as an
informal summary of these concepts, aimed to act as a refresher on these topics.

A.1 Vectors

In this section we will cover the basics of vectors, vector spaces and defining a basis
that can describe elements in these spaces.

Vector Spaces

A vector space over field F is defined by a set V of vectors vi and two operations: ad-
dition (+) and multiplication (av). Addition takes any two vectors v1, v2 and assigns
a third vector v1 + v2. Multiplication takes a scalar a and a vector v and assigns a
new vector av. This is scalar multiplication. The vector space must also satisfy the
following axioms:

Additive Associativity u+ (v +w) = (u+ v) +w.

Additive Commutativity u+ v = v + u.

Additive Identity There exists a vector 0 ∈ V called the zero vector, such that
u+ 0 = u.

Additive Inverse For every u ∈ V there exists a vector −u ∈ V called the addi-
tive inverse of u, such that u+−u = 0.

Multiplicative Compatibility a (bu) = (ab)u.

Multiplicative Identity 1u = u where 1 is the multiplicative identity in F .

Multiplicative Distributivity with Vector addition a (u+ v) = au+ av.

Multiplicative Distributivity with Field addition (a+ b)u = au+ bu.

51
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Example A.1.1. R2 is a vector space over the field of reals, with additive identity
[
0
0

]
and multiplicative identity 1 ∈ R.

Example A.1.2. R3 is a vector space over the field of reals, with additive identity

0
0
0


and multiplicative identity 1 ∈ R.

Vector Subspaces

Given a vector space (V,F), a non-empty subset W of vector space V that is both
closed under addition and scalar multiplication forms (W,F) and is called a subspace
of V . SubsetW must contain the zero-vector of V (otherwise it is not a vector space).

Example A.1.3. R2 is not a vector subspace of R3 as elements of R2 are ordered

pairs:
[
v1,1
v2,1

]
while elements of R3 are ordered triples:

v1,1v2,1
v3,1

. Similarly, R3 is not a

vector subspace of R2.

Example A.1.4. The line of form L =

[
a
0

]
where a ∈ R is a vector subspace of R2.

L is a valid space and includes the additive identity when a = 0 and the multiplicative

identity 1. Checking for additive closure, for any two points on the line v1 =

[
a1
0

]
,

v2 =

[
a2
0

]
,

v1 + v2 =

[
a1
0

]
+

[
a2
0

]
=

[
a1 + a2

0

]
∈ L

and for multiplicative closure, for scalar b,

bv = b

[
a
0

]
=

[
ba
0

]
∈ L

Therefore the line of the form
[
a
0

]
where a ∈ R is a vector subspace of R2.

Vector Span

The span of a set of vectors Vn = {v1, ...,vi, ...,vn}, where Vn ⊂ V , is the intersec-
tion of all subspaces containing Vn. Span Vn can also be thought of as the set of all
finite linear combinations of vi for i ∈ [1, n]. This can be written:

span (Vn) =

{
n∑
i=1

λivi

∣∣∣∣∣λi ∈ F ,vi ∈ Vn
}
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Example A.1.5. The vectors
[
1
0

]
,
[
0
2

]
and

[
1
1

]
span R2. For any

[
x
y

]
∈ R2, we seek

to find λi for i ∈ [1, 3] that satisfy:

[
x
y

]
= λ1

[
1
0

]
+ λ2

[
0
2

]
+ λ3

[
1
1

]
=

[
λ1 + λ3
2λ2 + λ3

]
=

[
1 0 1
0 2 1

]λ1λ2
λ3


There are an infinite number of solutions to this set of two equations with three un-
knowns.

Linear Independence

A set of vectors Vn is linearly independent if:

vi 6∈ span ({v1, ...,vi−1,vi+1, ...,vn})

Similarly vn is linearly dependant on {v1, ...,vn−1} if:

vn =

n−1∑
i=1

λivi

where λi ∈ F .

Example A.1.6. Consider the vectors v1 =

[
1
0

]
, v2 =

[
0
2

]
and v3 =

[
1
1

]
Any two vectors from {v1,v2,v3} are linearly independent.
However all three vectors are not linearly independent. We can say that v2 is linearly
dependant on v1, v3 as:

v2 =

[
0
2

]
= λ1

[
1
0

]
+ λ3

[
1
1

]
=

[
λ1 + λ3
λ3

]
= −2v1 + 2v3

Basis

A basis for a vector space is a linearly independent set of vectors that span the vector
space. If a vector space has dimension n then basis MUST contain n vectors.

Example A.1.7. Consider the vectors v1 =

[
1
0

]
, v2 =

[
0
2

]
and v3 =

[
1
1

]
.

Any two vectors from {v1,v2,v3} act as a basis for R2.
For example, if we choose v1, v3, we can say that for any vector v ∈ R2:

v =

[
x
y

]
= λ1

[
1
0

]
+ λ3

[
1
1

]
=

[
1 1
0 1

] [
λ1
λ3

]

∴

[
λ1
λ3

]
=

[
1 1
0 1

]−1 [
x
y

]
=

[
1 −1
0 1

] [
x
y

]
=

[
x− y
y

]
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Orthogonality and Orthonormality

Two vectors v1, v2 are orthogonal if vT1 ,v2 = 0. A set of vectors v1, ...,vn are
orthogonal if vTi vj = 0 for i, j ∈ [1, n] , i 6= j. A set of vectors v1, ...,vn are
orthonormal if

vTi vj =

{
1 if i = j
0 otherwise

for i, j ∈ [1, n].
Vectors can be normalised by using by dividing each vector by its length: v̂ =

[
1
‖v̂‖2

v̂
]

Given a set of vectors, we can find an orthonormal basis using the Gram-Schmidt pro-
cess.

Example A.1.8. Consider the vectors v1 =

[
1
0

]
, v2 =

[
0
2

]
and v3 =

[
1
1

]
.

Only the subset of vectors {v1,v2} is orthogonal. {v1,v2} are not orthonormal. If
we normalise {v1,v2} the resulting vectors v̂1, v̂2 are orthonormal:

v̂T1 v̂2 =

[
1

‖v̂1‖ 2
v̂1

]T [
1

‖v̂2‖2
v̂2

]
=

[
1

1

[
1
0

]]T [
1

2

[
0
2

]]
=

[
1
0

]T [
0
1

]
= 0

v̂T1 v̂1 =

[
1
0

]T [
1
0

]
= 1 v̂T2 v̂2 =

[
0
1

]T [
0
1

]
= 1
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A.2 Coordinate Systems

Given a vector v and a basis {b1, ..., bn}, we can write:

v =

n∑
i=1

λibi

The vector [λ1, ..., λn] are the coordinates of vector v. We can write:

v =
[
b1 . . . bn

] λ1...
λn


Coordinate Transforms

The coordinates of a vector depend on the basis used. To convert the coordinate rep-
resentation of a vector between two sets of basis we can use a coordinate transform
matrix.
Consider the vector v written in basis

[
w1 . . . wn

]
. Eachwi has a representation

in the new basis
[
u1 . . . un

]
.

We can write each basis vector in {w} as a linear combination in basis {u}:

wj =

n∑
i=1

ai,jui =
[
u1 . . . un

] a1,j...
an,j


we can therefore write:

v =
[
w1 . . . wn

] λ1...
λn



v =


[u1 . . . un

] a1,1...
an,1


 . . .

[u1 . . . un
] a1,n...
an,n




λ1...
λn



v =
[
u1 . . . un

] a1,1 . . . a1,n
...

...
an,1 . . . an,n


λ1...
λn


We can therefore define the coordinate transform matrix A:µ1

...
µn

 =

a1,1 . . . a1,n
...

...
an,1 . . . an,n


λ1...
λn

 = A

λ1...
λn


which can transform the coordinates λ in frame {wi} into the coordinates µ in frame
{ui}.
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Example A.2.1. Consider two sets of bases of R2:

{w1,w2} =

{[
1
2
1

]
,

[
1
1
2

]}
, {u1,u2} =

{[
1
0

]
,

[
0
1

]}
For any v in {wi}, we can write:

v =
[
w1 w2

] [λ1
λ2

]
w1,w2 can be written as:

w1 =

[
1
2
1

]
=

[
1 0
0 1

] [
µ1,1

µ2,1

]
w2 =

[
1
1
2

]
=

[
1 0
0 1

] [
µ1,2

µ2,2

]
We can therefore say that any vector v represented by coordinates λ inw1,w2 can be
represented as:

v =
[
u1 u2

] [µ1,1 µ1,2

µ2,1 µ2,2

] [
λ1
λ2

]
=
[
u1 u2

] [ 1
2 1
1 1

2

] [
λ1
λ2

]
=
[
u1 u2

]
Aλ

where Aλ is the representation in basis {u1,u2}
We double-check our result by looking at coordinates of the same point in each frame
as shown in Figure A.1.

Figure A.1: We plot the vector rep-
resented by coordinates [ 21 ] in the
{w1,w2} frame (shown in blue). Ap-
plying our coordinate transform matrix
A, we obtain the coordinates [ 2

2.5 ], in
frame {u1,u2} (shown in green). This
agrees with our plot showing the con-
struction of our vector in {w1,w2} (in
red) and reading off its location from
our axes.
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Example A.2.2. Our second example looks at the effect a coordinate transform be-
tween two orthonormal bases.

Check that these bases are
orthonormal- the definition is

shown on page 54

. Consider two sets of orthonormal bases of R2:

{w1,w2} =

{[
1
0

]
,

[
0
1

]}
, {u1,u2} =

{[√
2
2√
2
2

]
,

[
−
√
2
2√
2
2

]}
We repeat the same process as in Example A.2.1, rewriting out basis {w1,w2} in
{u1,u2}:

w1 =

[
1
0

]
=

[√
2
2 −

√
2
2√

2
2

√
2
2

] [
µ1,1

µ2,1

]
w2 =

[
0
1

]
=

[√
2
2 −

√
2
2√

2
2

√
2
2

] [
µ1,2

µ2,2

]



A.2. COORDINATE SYSTEMS 57

We then compute the transformation matrix:

v =
[
u1 u2

] [µ1,1 µ1,2

µ2,1 µ2,2

] [
λ1
λ2

]
=
[
u1 u2

] [ √2
2

√
2
2

−
√
2
2

√
2
2

] [
λ1
λ2

]
Therefore, the coordinates ν in {u1,u2} can be computed from coordinates λ in
{w1,w2} via:

ν =

[ √
2
2

√
2
2

−
√
2
2

√
2
2

]
λ

By decomposing this orthonormal matrix into Euler angles, we see that this is a rotation
by −π4 radians: Euler angles to Rotation matrix

in R2 is given by:[
cos(θ) −sin(θ)
sin(θ) cos(θ)

].

θ = atan2

(
µ2,1

µ2,2

)
= −π

4

If we plot these bases on a graph, we can see that basis {wi} is indeed a clockwise
rotation of π4 radians from basis {ui} as shown in Figure A.2.
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Figure A.2: Plot showing the two
sets of bases, {w1,w2} in blue and
{u1,u2} in green. We can see that
the rotation from frame {u1,u2} to
{w1,w2} in blue is −π4 radians.

In general, the process of finding the coordinate transform matrixA can be simpli-
fied to:

A
[
u1 . . . un

]−1 [
v1 . . . vn

]
Proof. We have said that for each basis vector {wj}, we can write it as a linear com-
bination of vectors from basis {ui}:

wj =
[
u1 . . . un

]
µj

For a given vector v with the coordinates λ in basis {wj}, we can write:

v =
[
w1 . . . wn

]
λ

Similarly, v can be written in basis {ui} by the coordinates ν as:

v =
[
u1 . . . un

]
ν
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We want to find coordinate transform matrix A that will convert from λ in basis {wj}
to ν in basis {ui} via: ν = Aλ. From our expression for v in {wj}, we can say:

v =
[
w1 . . . wn

]
λ

v =
[[
u1 . . . un

]
µ1 . . .

[
u1 . . . un

]
µn
]
λ

v =
[
u1 . . . un

] [
µ1 . . . µn

]
λ =

[
u1 . . . un

]
ν

∴
[
u1 . . . un

]
ν =

[
w1 . . . wn

]
λ

Pre-multiplying by the inverse of
[
u1 . . . un

]
gives:[

u1 . . . un
]−1 [

u1 . . . un
]
ν =

[
u1 . . . un

]−1 [
w1 . . . wn

]
λ

In×nν =
[
u1 . . . un

]−1 [
w1 . . . wn

]
λ

Giving our expression for A.

A.3 Matrix Partitioning

Consider the two matricesM1 ∈ Rm×n andM2 ∈ Rn×p. These matrices are nothing
but blocks of elements. We can subgroup elements in a matrix via partitioning.

m×n
[M1] =

 k×l
[A1]

k×(n−l)
[B1]

(m−k)×l
[C1]

(m−k)×(n−l)
[D1]

 n×p
[M2] =

 l×r
[A2]

l×(p−r)
[B2]

(n−l)×r
[C2]

(n−l)×(p−r)
[D2]


We can perform matrix operations like matrix multiplication in this form:

m×n
[M1]

n×p
[M2] =

 k×r
[[A1] [A2] + [B1] [C2]]

k×(p−r)
[[A1] [B2] + [B1] [D2]]

(m−k)×r
[[C1] [A2] + [D1] [C2]]

(m−k)×(p−r)
[[C1] [B2] + [D1] [D2]]


Two important cases are when subgroup matrices into row and column matrices. Con-
sider two matrices V and W which we subdivide into n column and row vectors re-
spectively:

V =
[
v1 . . . vn

]
W =

w
T
1
...
wT
n


The matrix multiplication VW is:

VW =

v1
 [ wT

1

]
+ · · ·+

vn
 [ wT

n

]
=

n∑
i=1

viw
T
i

The matrix multiplication WV is:

WV =

w
T
1 v1 . . . wT

1 vn
...

...
wT
nv1 . . . wT

nvn


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A.4 Linear Maps

Matrices can be thought of as Linear Maps. We introduce the key properties of Linear
Maps, and their application to matrices.

Linearity

A map f : X → Y between the two vector spaces X , Y is linear if:

f (ax+ by) = af (x) + bf (y)

where x ∈ X , y ∈ Y and a, b ∈ R.
Matrices are linear maps between vector spaces. We call the initial space that the
linear map acts on the ’domain’, and the final space that the linear map maps to the
’codomain’. The dimentions of these two spaces does not have to be the same.

Example A.4.1. Consider the linear map represented by the matrix A where:

y = Ax A =

[
1 0 0
0 1 0

]
with

x ∈ X
y ∈ Y
X = R3

Y = R2

Here the domain is X and the codomain is Y . We see that A takes any vector in R3

and flattens it (by disregarding the x3 component) into a vector inR2. IfAwas instead
defined as its transpose

(
Anew = ATold

)
, it would take a vector from R2 and embed it

into R3 as a plane.

If the matrix A is square, then the dimension of the two spaces X and Y will be
the same.

Decomposition

Any matrix A ∈ Rm×n decomposes its domain into two significant subspaces and its
codomain into two significant subspaces. These subspaces are termed the nullspace
and rangespace.

Nullspace The nullspace of a map f is the space of vectors in the domain that gets
mapped onto zero. This is written as the set of vectors in X that satisfy

{x ∈ X|f (x) = 0}

.

Rangespace The rangespace of a map is the space of vectors in the codomain that
f maps some vector x ∈ X to. This is written as the set of vectors in Y that satisfy

{y ∈ Y |∃x ∈ X s.t. f (x) = y}

.
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Using our definitions, we can determine how the range and null spaces our linear map
relate to the matrix A.

Range of A The range of A denoted R (A) are the vectors y ∈ Y that satisfies
{y ∈ Y |∃x ∈ Xs.t.Ax = y}. Building on our intuition on bases and coordinate
systems (Section A.2), we can see that the columns of A act as a basis forR (A).

R (A) = {y ∈ Y |∃x ∈ X s.t. Ax = y}

R (A) =

y ∈ Y
∣∣∣∣∣∣∃x ∈ X s.t.

c1 . . . cn

x = y


Therefore the span of the columns of A is the range of A.

Nullspace of A The nullspace ofA denotedN (A) are the vectorsx ∈ X that sat-
isfies {x ∈ X|Ax = 0}. This can be thought of as the x ∈ X that are orthogonal
to the rows of A.

N (A) = {x ∈ X|Ax = 0} =

x ∈ X
∣∣∣∣∣∣∣
 r1

...
rm

x = 0


It seems strange to say that the Nullspace of A as being orthogonal to the rows of A.
By transposing matrixA, we can see that the rows of A are the columns of AT . As we
have transposed A, it is important to note that AT can be thought of as a linear map
from Y to X (rather than from X to Y ). This means that the columns of AT act as a
basis for the vector space orthogonal toN (A). Using this observation we can make a
statement about the nullspace and range of AT .

Range of AT As in the previous case,R
(
AT
)

can be written as

R
(
AT
)

=
{
x ∈ X

∣∣∃y ∈ Y s.t. ATy = x
}

R
(
AT
)

=

x ∈ X
∣∣∣∣∣∣∃y ∈ Y s.t.

r1 . . . rn

y = x


Hence R

(
AT
)

is the span of the columns of AT . We also know that R
(
AT
)

is
orthogonal toN (A). We can therefore say that the domain of A can be written as
the direct sum of the two subspaces as shown:

dom (A) = N (A)⊕R
(
AT
)

Nullspace of AT Using the same method as before we can show that the nullspace
of AT is orthogonal to the rows of AT , and that N

(
AT
)

is orthogonal to R (A).
We now have a decomposition for the codomain:

codom (A) = N
(
AT
)
⊕R (A)



A.4. LINEAR MAPS 61

Example A.4.2. Consider the matrix A =

[
1 0 0
0 1 0

]
This matrix represents the

linear map from R3 to R2. From our definitions above, we see that:

R (A) This is the span of the columns of A. By inspection we see that this is the
usual basis for R2.

R (A) = R2

N (A) This is the subspace orthogonal to the rows of A. By inspection we see
that this is the third component of a vector in R3.

N (A) =


0

0
a

∀a ∈ R
R
(
AT
)

This is the span of the columns of AT . By inspection we see that this is
a plane in R3 with the third component being kept at zero.

R
(
AT
)

=


ab

0

∀a, b ∈ R
N
(
AT
)

This is the subspace orthogonal to the rows ofAT . By inspection we see
that this can only be the zero vector.

N
(
AT
)

=

[
0
0

]
We finally check our assertions on the domain and codomain:

R3 = dom (A) = N (A)⊕R
(
AT
)

=


0

0
c

⊕

ab

0

∀a, b, c ∈ R
R2 = codom (A) = N

(
AT
)
⊕R (A) =

{[
0
0

]}
⊕R2
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A.5 Square Matrices

In this course we will be primarily concerned with square matrices. There are a number
of special parameters and properties that we will find useful.

Eigenvalue Problem

Given a matrix A, we seek to find a scalar λ and a vector x that satisfy:

Ax = λx

Here, λ is termed the eigenvalue, and vector x is the eigenvector.
In the special case where λ = 0, we can say that x ∈ N (A).

Similarity Transforms

Given a linear transformation represented by matrix A ∈ Rn×n, where A : X → X ,
if the basis used to represent coordinates changes, how should A change? Consider
the coordinate change X̄ = TX . We wish to find Ā such that:

ĀX̄ = TAX

ĀX̄ = TAT−1X̄

This provides us with a similarity transform for A under the coordinate transform T :

Ā = TAT−1
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A.6 Invertability of a Matrix

A square matrix A is said to be invertible if it has both a left and right inverse.

Left Inverse A matrix is said to have a left inverse if:

∃A−1L s.t. A−1L A = I

Right Inverse A matrix is said to have a right inverse if:

∃A−1R s.t. AA−1R = I

A matrix is invertible if there is a one-to-one correspondence between every element
of the domain and codomain.

This is equivalent to saying that A is invertible if it is a bijection, being both
injective and surjective.

In a practical sense it mean that elements in the domain and codomain are in pairs.
For each pair of points (x,y) with x ∈ X and y ∈ Y , we get the linking between
them via:

y = Ax x = A−1y

For a square matrix A the following statements are equivalent:

• A is invertible.

• A has full row rank (the only element in N (A) is 0.

• A has full column rank (R (A) spans the whole codomain.

• A has no zero eigenvalues.

• det (A) 6= 0.

the following statements are also equivalent:

• A is not invertible.

• A is singular.

• A has linearly dependant rows-A does not have full row rank. (This means there
are nonzero elements in N (A), i.e. ∃x 6= 0s.t.Ax = 0)

• A has linearly dependant columns- A does not have full column rank. (R (A)
does not span the whole codomain).

• A has at least one zero eigenvalue.

• det (A) = 0.
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The intuition behind singular matrices, is that one or more dimensions of the domain
are collapsed along the directions of the nullspace vectors.

Example A.6.1. Consider the linear mapping represented by matrix:

A =

[
1 3 4
2 4 6

]
This matrix does not have full column rank, column 3 is the sum of columns 1 and 2.
We therefore know that this matrix is singular and therefore has a nullspace. The
nullspace is characterised by the vectorspace orthogonal to the rows ofA. We can find
a basis for our nullspace by therefore taking the crossproduct of the rows of A.
The dimensional collapse of a singular matrix can be seen in figure A.3. As shown,
points in or original R3 space can are collapsed along the Nullspace vector forming a
plane.
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Figure A.3: The collapse of R3 using the linear mapping represented by matrix A.
Left: Our original space with representative points shown in green. Right: the col-
lapsed space (green) and the normal vector (black).



A.6. INVERTABILITY OF A MATRIX 65

Pseudoinverse

An interesting extension to the inverse is the Moore-Penrose Pseudoinverse. Given any
matrix A, an inverse-like matrix called the pseudoinverse denoted A+ can be found.
There are two definitions of the pseudo inverse depending on whether AAT or AAT
is invertible.
If ATA is invertible then the pseudoinverse can be written:

A+ =
(
ATA

)−1
AT

If AAT is invertible then the pseudoinverse can be written:

A+ = AT
(
AAT

)−1
The pseudoinverse effectively finds the least squares solution to a system of linear
equations, is always defined and is unique. Example A.6.2 shows the utility of the
pseudoinverse.

Example A.6.2. Consider our previous linear map represented by matrix:

A =

[
1 3 4
2 4 6

]
We showed in Example A.6.1 that this matrix was non-invertable. However let us
use the pseudoinverse to flatten a volume of R3 via matrix A. Consider any vector
vX ∈ X . This vector can be flattened to a corresponding point vS ∈ S via:

vS = AvX

We can find a representation of this vector in ourX space again by using the pseudoin-
verse. This gives us the projection of vX onto the invertible part of A.

vA+S = vA+AX = A+S

It is important to note that any vector that is parallel to nullspace vector and passes
through this point will have the same representation.
Figure A.4 shows points of a unit cube in R3 before and after being flattened. After
being flattened onto aR2 plane embedded inR3, all the points in this embedded plane
now have a one-to-one relationship with the R2 in our s, t basis.
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Figure A.4: The collapse of a unit cube inR3 using the linear mapping represented by
matrix A. Left: Representation in R3 showing the original cube (green), its flattened
representation (blue), the nullspace basis vector (black). Right: Our representation of
the cube inR2 after mapping the points using theAmatrix (blue). These are the points
that are then used to give the flattened plane inR3. Given a point inR3 (shown in red),
we track it through the different mappings. Its representation in (s, t) is shown in the
right figure. If we use the pseudoinverse to find the representation of (s, t) in R3, we
find it has been flattened onto the blue plane.
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B.1 Linear Algebra

For orthogonal matrices A−1 = AT

Orthogonality A matrix
[
v1, ...,vn

]
is said to be orthogonal if:

vTi vj =

{
1 if i = j
0 otherwise

B.2 Special Operators

Hat

ω̂ =

ˆω1

ω2

ω3

 =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


Wedge

ξ̂ =

[̂
v
ω

]
=

[
ω̂ v
0 0

]

B.3 Rotations

Rx (θ) =

1 0 0
0 cos (θ) −sin (θ)
0 sin (θ) cos (θ)

 = ex̂θ

Ry (θ) =

 cos (θ) 0 sin (θ)
0 1 0

−sin (θ) 0 cos (θ)

 = eŷθ

Rz (θ) =

cos (θ) −sin (θ) 0
sin (θ) cos (θ) 0

0 0 1

 = eẑθ

R(ω, θ) = eŵθ = I3 +
ω̂

‖ω‖
sin (‖ω‖ θ) +

ω̂2

‖ω‖2
(1− cos (‖ω‖ θ))

B.4 Rigid Body Motion

gAB =

[
RAB pAB
0 1

]
g−1AB =

[
R−1AB −R−1ABpAB
0 1

]
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B.5 Exponential Notation

RAB (θ1) = eω̂1θ1

gAB (θ1) = eξ̂1θ1gAB (0)

gST (θ1, . . . , θn) = eξ̂1θ1 . . . eξ̂nθngST (0)

Special Cases

Pure Rotation
ξ =

[
−ω × q
ω

]
Pure Translation

ξ =

[
v
0

]
Pure Rotations, Screws (Rotation and Translation)

eξ̂θ =

[
eω̂θ

(
I3 − eω̂θ

)
(ω × v) + ωωTvθ

0 1

]
Pure Translation

eξ̂θ =

[
I3 vθ
0 1

]


