AR Tag Tutorial

Austin Buchan

October 22, 2014

This document provides a tutorial on using AR (Augmented Reality) Tags to track the 3D location of
markers using camera images in a ROS environment. We provide examples for using the tags with a webcam,
and using the hand and head cameras on Baxter.

1 Introduction

Figure 1: Example AR Tags

An AR Tag is usually a square pattern printed on a flat surface, such as the patterns in Figure[l] The
corners of these tags are easy to identify from a single camera perspective, so that the homography to the
tag surface can be computed automatically. The center of the tag also contains a unique pattern to identify
multiple tags in an image. When the camera is calibrated and the size of the markers is known, the pose of
the tag can be computed in real-world distance units.

There are several ROS packages that can produce pose information from AR tags in an image, we will be
using ar_track_alvar [ﬂ If you are planning on using AR Tags, read through the documentation carefully
before using this tutorial.

2 Webcam Tracking

2.1 Setup
1. Download the package to the src directory of a ROS workspace with

git clone https://github.com/sniekum/ar_track_alvar.git

2. Download the AR Tag Resources zip file from the Piazza website, and unzip this to the launch directory
of the ar_track_alvar package.

3. Edit webcam_track.launch the update the the camera_info_url parameter to have the full path to
the usb_cam.yml.

IMPORTANT NOTE: You need to leave the file:/// in front of the path to the yml file. The
parameter is expecting a web URL, but the file:/// tells it to look in the local file system.

Thttp://wiki.ros.org/ar_track_alvar


http://wiki.ros.org/ar_track_alvar

pwd will print the full path to the current directory.

4. If any other parameters have changed, such as the name of the webcam, make sure they are consistent
in the launch file.

5. Run catkin_make from the workspace (this may take a while).

6. Find or print some AR Tags. There should be a class set of 4 in Cory 119 and SDH 133. Please
only use these for testing, and leave them unmodified so others can use them. The ar_track_alvar
documentation has instructions for printing more tags that you can use in your project.

2.2 Calibration

If you use a camera other than the lab webcams, you will need to run the camera calibration yourself.
This process collects images of a standardized grid, and computes calibration parameters to correctly map
camera pixels to straight rays in the world. This information is stored in a YAML file (*.yml), which we
have provided for the lab webcams.

I used the camera_calibrationﬂ package to calibrate our webcams by following the monocular calibra-
tion tutorial. To do this you will need to download and make the the package. An important step here is
selecting the correct branch of of the package to use. The lab computers are running ROS Groovy, so after
cloning the repository you would switch branches with:

git checkout groovy-devel

You will then need to wave a calibration grid around the camera view until it collects enough images
to calculate. There is a grid with 1 inch squares available in Cory 119, or you can create one using the
instructions in the camera calibration documentation. When this is complete, commiting the calibration
should work. Try this first on your platform, and see if you get the success message “writing calibration
data to ...” in the console.

However, on the lab computers the program tended to hang after clicking the commit button, without
updating any information. To work around this, you can click the save button instead to produce a zip
file of the calibration information. This contains a ost.txt file with the info for the YAML file. The
camera_calibration_parsers E| package can then convert this to a YAML file (check the doc page). You
then need to update the usb_cam node camera_info_url to point to this new file.

2.3 Visualizing results

usb_cam

Jusb_cam/camera_info

Jusb_cam/image_raw

Figure 2: RQT Graph using AR Tags

ot

Once the tracking package is installed, and the camera calibration is complete, you can run tracking by
launching webcam_track.launch. You should see topics /visualization_marker and /ar_pose_marker
being published. They are only updated when a marker is visible, so you will need to have a marker in the
field of view of the camera to get messages.

Running rqt_graph at this point should produce something like Figure As this graph shows, the
tracking node also updates the /tf topic to have the positions of observed markers published in the TF
Tree.

%http://wiki.ros.org/camera_calibration
Shttp://wiki.ros.org/camera_calibration_parsers


http://wiki.ros.org/camera_calibration
http://wiki.ros.org/camera_calibration_parsers

Figure 3: Tracking AR Tags with webcam

To get a sense of how this is all working, you can use RViz to overlay the tracked positions of markers
with camera imagery. With the camera and tracking node running, start RViz with:

rosrun rviz rviz

From the Displays panel in RViz, add a “Camera” display. Set the Image Topic of the Camera Display
to the appropriate topic (/usb_cam/image_raw for the starter project), and set the Global Options Fixed
Frame to usb_cam. You should now see a separate docked window with the live feed of the webcam.

Finally, add a TF display to RViz. At this point, you should be able to hold up an AR Tag to the
camera, and see coordinate axes superimposed on the image of the tag in the camera display. Figure [3]shows
several of these axes on tags using the lab webcams. Making the marker scale smaller and disabling the
Show Arrows option can make the display more readable. This information is also display in the 3D view of
RViz, which will help you debug spatial relationships of markers for your project.

Alternatively, you can display the AR Tag positions in RViz by adding a Marker Display to RViz. This
will draw colored boxes representing the AR Tags.

3 Baxter Tracking

The cameras on Baxter were calibrated at the factory, so we only need to run a tracking node for each camera
that we want information from. You can copy the section of the previous launch file that starts the tracking
node, setting the cam_image_topic, cam_info_topic, and output_frame parameters appropriately. Adding
the Robot Model and then marker or TF data to RViz a great way to see how the markers are being identified
around Baxter.

Some important notes that I found were necessary to get this working:

e The computer connected to Baxter is running ROS Hydro. You need to check out the right branch of
the tracking repo with git checkout hydro-devel.

You will need to have a unique name for each tracking node.

So far I have only got tracking to work work at 1280x800 resolution. See the Baxter Camera Control
documentation EI for information on starting and setting the cameras.

e Use the _axis frames for the hand camera output frames.

e The head camera orientation seems a bit wonky, stay tuned to see if we figure out why this is.

4|ht1:ps ://github. com/RethinkRobotics/sdk—docs/wiki/Camera—Control—Examplel



https://github.com/RethinkRobotics/sdk-docs/wiki/Camera-Control-Example

e When a tag is visible from multiple cameras, the visualizer will constantly display only the last published
information. This will make the display appear jumpy. If you want a single pose estimate of a tag
from multiple views, you may have to use the /ar_pose_marker topic relative to each camera frame
and average them yourself.



	Introduction
	Webcam Tracking
	Setup
	Calibration
	Visualizing results

	Baxter Tracking

