UMass Lowell 16.480/552 Microprocessor Design Il and Embedded Systems

Lab 2: Interfacing with a Sensor Device on an Embedded

Computer System

Due Date: See the course schedule web page.
rev:9/17/2014

Objective

* Learn how to interface sensors with embedded computer systems
* Understand bus protocols
* Understand the operation of GPIO ports

Description

By now you should have a working sensor device that can measure the light
intensity in the surrounding environment. Moving forward, we would like to
connect it to an embedded computing system to process the sensory data. In
general, there are many possible ways to connect a customized device to an
embedded computer, depending on the available interfaces on the computer and the
sensor device. Examples include serial communication port, parallel port, USB,
General Purpose I/0 (GPIO), and even Ethernet. In this lab, we choose to use the
GPIO port of an embedded computer (e.g. Intel Galileo) and design a customized bus
protocol to acquire sensor data.

Our customized interface protocol governs the information exchange between the
embedded computer and sensor device. At the conceptual level, the embedded
computer sends commands to the sensor device, which responds with its data or
status. At the bus signaling level, the sensor device is connected to the GPIO ports of
Intel Galileo, which provides data bus and control signals for implementing our
customized bus protocol. The details of the interfacing bus protocol are explained as
follows.

Command/Response Protocol
The Galileo board functions as the master of the bus protocol, and the PIC-based
sensor responds to Galileo as a slave device.

(1) On the Intel Quark based embedded computer, a user application on Yocto Linux
issues commands to the PIC-based sensor device.

/* user commands */

#define MSG RESET 0x0 /* reset the sensor to initial state */
#define MSG PING 0x1 /* check if the sensor is working
properly */

#define MSG GET 0x2 /* obtain the most recent ADC result */

Command MSG_RESET will reset the state of the sensor. Command MSG_PING
checks if the sensor device is operational. Command MSG_GET asks the sensor
device to return the most recent ADC value.

(2) On the sensor device, the PIC microcontroller responds to the user application
(on Galileo) with the following messages:

/* Sensor Device Responses */
#define MSG ACK 0xE /* acknowledgement to the commands */
#define MSG NOTHING OxF /* reserved */

Usually a MSG_ACK message is replied from the sensor device after a command is
received and corresponding actions are performed. Message MSG_NOTHING is a
reserved message which should not appear in normal operations. MSG_ACK
message follows the actual ADC value if the command from the embedded computer
is MSG_GET. An example command/response transaction between the sensor and
the embedded computer is as follows.

To obtain the most recent ADC result:
1. The user application (on Intel Galileo) sends MSG_GET to the sensor;
2. The sensor will output three 4-bit nibbles to the embedded system, trigger by
the “Strobe” signal from the GPIO port; the user application (on Galileo)
reads the three nibbles in sequence;
3. The sensor responds with MSG_ACK to tell the user application that it
finishes reporting a 10-bit ADC result.

Bus Protocol

The PIC microcontroller on the sensor device is connected to the embedded
computer through the GPIO port. A viable pin assignment is shown in Figure 1
although there can be certainly other possible assignments. Over the GPIO port, five
signal lines (D3-D0 and Strobe) are available. The data bus (D3-D0) is 4-bit. The
control signals is Strobe driven by the Galileo board to synchronize the information
exchange between the sensor device and the embedded computer.

() 4
Strobe @

- — WRITE operation

from computer’s perspective)

Figure 1. Write operation on the bus

The steps (in Figure 1) involved in the write operation are as follows.
(1) The computer pulls the Strobe signal low. The PIC microcontroller gets ready
to read a 4-bit command message.

(2) The computer outputs a command on the data bus

(3) The computer raises the Strobe signal to indicate the command is ready on
the bus. The PIC microcontroller starts reading the value (i.e. a command)
from the bus. The computer maintains the value for at least 10ms.

(4) The computer ends the write operation by pulling the Strobe signal to low
again. By this time, the PIC should have already finished reading the value.

(5) The computer stops putting the command on the bus. The write operation

concludes.

Note that the GPIO port of the computer should be in low impedance mode when
outputting the command, while the PIC should put the data pins in high impedance

mode since it is receiving the value.

@ 4
Strobe @

READ operation

Data 4@)<:>(L (from computer’s perspective)

Figure 2. Read operation on the bus

Figure 2 illustrates the five steps involved in a read operation from the computer
(although the timing diagram appears to have the same pattern as Figure 3, there

are differences in the steps):
(1) The computer pulls the Strobe signal low to get ready for read operation

(2) The PIC microcontroller on the sensor device outputs a 4-bit value (either
MSG_ACK or a portion of the ADC value) when it sees a low on the strobe line.

(3) The computer raises the Strobe signal and starting reading the value from
the data bus. The PIC checks the Strobe signal and learns that the computer

has started reading the value.
(4) The computer pulls the Strobe signal low again to indicate that the value has

been read.
(5) The PIC microcontroller sees the Strobe pulled low and stops outputting the

4-bit value.

Note that the read operation can be repeated for multiple times (e.g. three times for
obtaining a 10-bit ADC value).

What You Need to Accomplish in this Lab

1. Design a user space application on Yocto Linux to directly access the GPIO port
of an Intel Galileo board and control the Strobe signals and data bus as described

in Figures 1 and 2.
2. Wire up the sensor device (PIC) with the GPIO port (Galileo).

3. Design firmware for the PIC microcontroller on the sensor device to support the
read and write operations as described in Figures 1 and 2.

4. On the Intel Galileo embedded system, implement the bus protocol, and display
the 10-bit ADC result obtained through the MSG_GET command.

Intel Galileo Board and GPIO

You will need to setup Linux on an Intel Galileo board, and complete the GP1O
programming using C.

For detailed instructions on Linux setup and GPIO programming, please refer to the
README.txt file in the lab assignment repository http://github.com/yanluo-
uml/micro2.git

Deliverables

A zipped file containing
1. Schematic of the design (in both native and pdf formats)
2. Source code
3. Reports

References

[1] PIC16F688 datasheet. Available at
http://wwl.microchip.com/downloads/en/DeviceDoc/41203D.pdf

[2] Intel Galileo GPIO Port
http://www.malinov.com/Home/sergey-s-blog/intelgalileo-
programminggpiofromlinux

[3] Yocto Linux image and installation instructions, https://github.com/yanluo-
uml/micro2/lab2. You can checkout git repository http://github.com/yanluo-
uml/micro2.git using git tools.

