Chapter 13: Direct Memory Access and DMA-Controlled I/O
Introduction

• The DMA I/O technique provides direct access to the memory while the microprocessor is temporarily disabled.

• This chapter also explains the operation of disk memory systems and video systems that are often DMA-processed.

• Disk memory includes floppy, fixed, and optical disk storage. Video systems include digital and analog monitors.
Chapter Objectives

Upon completion of this chapter, you will be able to:

• Describe a DMA transfer.
• Explain the operation of the HOLD and HLDA direct memory access control signals.
• Explain the function of the 8237 DMA controller when used for DMA transfers.
• Program the 8237 to accomplish DMA transfers.
13–1 BASIC DMA OPERATION

- Two control signals are used to request and acknowledge a direct memory access (DMA) transfer in the microprocessor-based system.
 - the HOLD pin is an input used to request a DMA action
 - the HLDA pin is an output that acknowledges the DMA action
- Figure 13–1 shows the timing that is typically found on these two DMA control pins.
Figure 13–1 HOLD and HLDA timing for the microprocessor.

- HOLD is sampled in any clocking cycle
- when the processor recognizes the hold, it stops executing software and enters hold cycles
- HOLD input has higher priority than INTR or NMI
- the only microprocessor pin that has a higher priority than a HOLD is the RESET pin
• HLDA becomes active to indicate the processor has placed its buses at high-impedance state.
 – as can be seen in the timing diagram, there are a few clock cycles between the time that HOLD changes and until HLDA changes
• HLDA output is a signal to the requesting device that the processor has relinquished control of its memory and I/O space.
 – one could call HOLD input a DMA request input and HLDA output a DMA grant signal
Basic DMA Definitions

• Direct memory accesses normally occur between an I/O device and memory without the use of the microprocessor.
 – a **DMA read** transfers data from the memory to the I/O device
 – A **DMA write** transfers data from an I/O device to memory

• Memory & I/O are controlled simultaneously.
 – which is why the system contains separate memory and I/O control signals
• A DMA read causes the MRDC and IOWC signals to activate simultaneously.
 – transferring data from memory to the I/O device
• A DMA write causes the MWTC and IORC signals to both activate.
• 8086/8088 require a controller or circuit such as shown in Fig 13–2 for control bus signal generation.
• The DMA controller provides memory with its address, and controller signal (DACK) selects the I/O device during the transfer.
Figure 13–2 A circuit that generates system control signals in a DMA environment.
• Data transfer speed is determined by speed of the memory device or a DMA controller.
 – if memory speed is 50 ns, DMA transfers occur at rates up to 1/50 ns or 20 M bytes per second
 – if the DMA controller functions at a maximum rate of 15 MHz with 50 ns memory, maximum transfer rate is 15 MHz because the DMA controller is slower than the memory
• In many cases, the DMA controller slows the speed of the system when transfers occur.
• The switch to serial data transfers in modern systems has made DMA less important.
• The serial PCI Express bus transfers data at rates exceeding DMA transfers.
• The SATA (serial ATA) interface for disk drives uses serial transfers at the rate of 300 Mbps
 – and has replaced DMA transfers for hard disks
• Serial transfers on main-boards between components using can approach 20 Gbps for the PCI Express connection.
The 8237 DMA CONTROLLER

- The 8237 supplies memory & I/O with control signals and memory address information during the DMA transfer.
 - actually a special-purpose microprocessor whose job is high-speed data transfer between memory and I/O

- Figure 13–3 shows the pin-out and block diagram of the 8237 programmable DMA controller.
Figure 13–3 The 8237A-5 programmable DMA controller. (a) Block diagram and (b) pin-out. (Courtesy of Intel Corporation.)
• 8237 is not a discrete component in modern microprocessor-based systems.
 – it appears within many system controller chip sets
• 8237 is a four-channel device compatible with 8086/8088, adequate for small systems.
 – expandable to any number of DMA channel inputs
• 8237 is capable of DMA transfers at rates up to 1.6M bytes per second.
 – each channel is capable of addressing a full 64K-byte section of memory and transfer up to 64K bytes with a single programming
8237 Pin Definitions

CLK

- **Clock** input is connected to the system clock signal as long as that signal is 5 MHz or less.
 - in the 8086/8088 system, the clock must be inverted for the proper operation of the 8237
8237 Pin Definitions

CS

• **Chip select** enables 8237 for programming.
• The CS pin is normally connected to the output of a decoder.
• The decoder does not use the 8086/8088 control signal IO/M(M/IO) because it contains the new memory and I/O control signals (MEMR, MEMW, IOR and IOW).
8237 Pin Definitions

RESET

• The reset pin clears the command, status, request, and temporary registers.
• It also clears the first/last flip-flop and sets the mask register.
 – this input primes the 8237 so it is disabled until programmed otherwise
8237 Pin Definitions

READY

- A logic 0 on the **ready** input causes the 8237 to enter wait states for slower memory components.

HLDA

- A **hold acknowledge** signals 8237 that the microprocessor has relinquished control of the address, data, and control buses.
8237 Pin Definitions

\(DREQ_0 – DREQ_3\)

- **DMA request inputs** are used to request a transfer for each of the four DMA channels.

 - the polarity of these inputs is programmable, so they are either active-high or active-low inputs.

\(DB_0 – DB_7\)

- **Data bus** pins are connected to the processor data bus connections and used during the programming of the DMA controller.
8237 Pin Definitions

IOR

- **I/O read** is a bidirectional pin used during programming and during a DMA write cycle.

IOW

- **I/O write** is a bidirectional pin used during programming and during a DMA read cycle.
8237 Pin Definitions

EOP

• **End-of-process** is a bidirectional signal used as an input to terminate a DMA process or as an output to signal the end of the DMA transfer.
 – often used to interrupt a DMA transfer at the end of a DMA cycle
8237 Pin Definitions

A₀–A₃

- These **address pins** select an internal register during programming and provide part of the DMA transfer address during a DMA action.
 - address pins are outputs that provide part of the DMA transfer address during a DMA action
8237 Pin Definitions

HRQ

- **Hold request** is an output that connects to the HOLD input of the microprocessor in order to request a DMA transfer.
8237 Pin Definitions

$DACK_0$–$DACK_3$

• DMA channel acknowledge outputs acknowledge a channel DMA request.

• These outputs are programmable as either active-high or active-low signals.
 – DACK outputs are often used to select the DMA-controlled I/O device during the DMA transfer.
8237 Pin Definitions

AEN

- **Address enable** signal enables the DMA address latch connected to the DB_7–DB_0 pins on the 8237.
 - also used to disable any buffers in the system connected to the microprocessor
8237 Pin Definitions

ADSTB

- **Address strobe** functions as ALE, except it is used by the DMA controller to latch address bits A\(_{15}\)–A\(_{8}\) during the DMA transfer.

MEMR

- **Memory read** is an output that causes memory to read data during a DMA read cycle.
8237 Pin Definitions

MEMW

- Memory write is an output that causes memory to write data during a DMA write cycle.
8237 Internal Registers

CAR

• The **current address register** holds a 16-bit memory address used for the DMA transfer.
 – each channel has its own current address register for this purpose

• When a byte of data is transferred during a DMA operation, CAR is either incremented or decremented.
 – depending on how it is programmed
8237 Internal Registers

CWCR

• The current word count register programs a channel for the number of bytes (up to 64K) transferred during a DMA action.

• The number loaded into this register is one less than the number of bytes transferred.
 – for example, if a 10 is loaded to CWCR, then 11 bytes are transferred during the DMA action
8237 Internal Registers
BA and BWC

• The base address (BA) and base word count (BWC) registers are used when auto-initialization is selected for a channel.

• In auto-initialization mode, these registers are used to reload the CAR and CWCR after the DMA action is completed.
 – allows the same count and address to be used to transfer data from the same memory area
8237 Internal Registers

CR

• The **command register** programs the operation of the 8237 DMA controller.

• The register uses bit position 0 to select the memory-to-memory DMA transfer mode.
 – memory-to-memory DMA transfers use DMA channel 0 to hold the source address
 – DMA channel 1 holds the destination address

• Similar to operation of a MOVSB instruction.
Figure 13–4 8237A-5 command register. (Courtesy of Intel Corporation.)
8237 Internal Registers

MR

- The **mode register** programs the mode of operation for a channel.

- Each channel has its own mode register as selected by bit positions 1 and 0.
 - remaining bits of the mode register select operation, auto-initialization, increment/decrement, and mode for the channel
Figure 13–5 8237A-5 mode register. (Courtesy of Intel Corporation.)

![Diagram of 8237A-5 mode register]

- Bit 7: Channel 0 select
- Bit 6: Channel 1 select
- Bit 5: Channel 2 select
- Bit 4: Channel 3 select
- Bit 3: Verify transfer
- Bit 2: Write transfer
- Bit 1: Read transfer
- Bit 0: Illegal

- If bits 6 and 7 are both 1, the mode is XX.

- Bit 7: Autoinitialization disable
- Bit 6: Autoinitialization enable

- Bit 7: Address increment select
- Bit 6: Address decrement select

- Bit 7: Demand mode select
- Bit 6: Single mode select
- Bit 5: Block mode select
- Bit 4: Cascade mode select
8237 Internal Registers

BR

• The **bus request register** is used to request a DMA transfer via software.
 – very useful in memory-to-memory transfers, where an external signal is not available to begin the DMA transfer
Figure 13-6 8237A-5 request register. (Courtesy of Intel Corporation.)
8237 Internal Registers

MRSR

- The **mask register set/reset** sets or clears the channel mask.
 - if the mask is set, the channel is disabled
 - the RESET signal sets all channel masks to disable them
Figure 13–7 8237A-5 mask register set/reset mode. (Courtesy of Intel Corporation.)
8237 Internal Registers

MSR

• The **mask register** clears or sets all of the masks with one command instead of individual channels, as with the MRSR.
Figure 13–8 8237A-5 mask register. (Courtesy of Intel Corporation.)
8237 Internal Registers

SR

• The **status register** shows status of each DMA channel. The TC bits indicate if the channel has reached its terminal count (transferred all its bytes).

• When the terminal count is reached, the DMA transfer is terminated for most modes of operation.
 – the request bits indicate whether the DREQ input for a given channel is active
Figure 13–9 8237A-5 status register. (Courtesy of Intel Corporation.)
Software Commands

• Three software commands are used to control the operation of the 8237.
• These commands do not have a binary bit pattern, as do various control registers within the 8237.
 – a simple output to the correct port number enables the software command
• Fig 13–10 shows I/O port assignments that access all registers and the software commands.
Figure 13–10 8237A-5 command and control port assignments. (Courtesy of Intel Corporation.)

<table>
<thead>
<tr>
<th>Signals</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A3 A2 A1 A0 IOR IOW</td>
<td></td>
</tr>
<tr>
<td>1 0 0 0 0 1</td>
<td>Read Status Register</td>
</tr>
<tr>
<td>1 0 0 0 1 0</td>
<td>Write Command Register</td>
</tr>
<tr>
<td>1 0 0 1 0 1</td>
<td>Illegal</td>
</tr>
<tr>
<td>1 0 1 0 0 1</td>
<td>Write Request Register</td>
</tr>
<tr>
<td>1 0 1 0 0 0</td>
<td>Illegal</td>
</tr>
<tr>
<td>1 0 1 0 0 0</td>
<td>Write Single Mask Register Bit</td>
</tr>
<tr>
<td>1 0 1 0 0 1</td>
<td>Illegal</td>
</tr>
<tr>
<td>1 0 1 0 1 0</td>
<td>Write Mode Register</td>
</tr>
<tr>
<td>1 1 0 0 0 0</td>
<td>Clear Byte Pointer Flip/Flop</td>
</tr>
<tr>
<td>1 1 0 0 0 1</td>
<td>Illegal</td>
</tr>
<tr>
<td>1 1 0 0 0 0</td>
<td>Read Temporary Register</td>
</tr>
<tr>
<td>1 1 0 1 1 0</td>
<td>Master Clear</td>
</tr>
<tr>
<td>1 1 1 0 0 0</td>
<td>Illegal</td>
</tr>
<tr>
<td>1 1 1 0 0 0</td>
<td>Clear Mask Register</td>
</tr>
<tr>
<td>1 1 1 0 0 1</td>
<td>Illegal</td>
</tr>
<tr>
<td>1 1 1 0 0 1</td>
<td>Write All Mask Register Bits</td>
</tr>
</tbody>
</table>
8237 Software Commands

Master clear

- Acts exactly the same as the RESET signal to the 8237.
 - as with the RESET signal, this command disables all channels

Clear mask register

- Enables all four DMA channels.
8237 Software Commands

Clear the first/last flip-flop

- Clears the first/last (F/L) flip-flop within 8237.
- The F/L flip-flop selects which byte (low or high order) is read/written in the current address and current count registers.
 - if F/L = 0, the low-order byte is selected
 - if F/L = 1, the high-order byte is selected
- Any read or write to the address or count register automatically toggles the F/L flip-flop.
Programming the Address and Count Registers

• Figure 13–11 shows I/O port locations for programming the count and address registers for each channel.

• The state of the F/L flip-flop determines whether the LSB or MSB is programmed.
 – if the state is unknown, count and address could be programmed incorrectly

• It is important to disable the DMA channel before address and count are programmed.
Figure 13–11 8237A-5 DMA channel I/O port addresses. (Courtesy of Intel Corporation.)

<table>
<thead>
<tr>
<th>Channel</th>
<th>Register</th>
<th>Operation</th>
<th>Signals</th>
<th>Internal Flip-Flop</th>
<th>Data Bus DB0-DB7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Base and Current Address</td>
<td>Write</td>
<td>CS 0</td>
<td>1</td>
<td>A0-A7</td>
</tr>
<tr>
<td></td>
<td>Current Address</td>
<td>Read</td>
<td>CS 0</td>
<td>0</td>
<td>A8-A15</td>
</tr>
<tr>
<td></td>
<td>Base and Current Word Count</td>
<td>Write</td>
<td>CS 0</td>
<td>1</td>
<td>A0-A7</td>
</tr>
<tr>
<td></td>
<td>Current Word Count</td>
<td>Read</td>
<td>CS 0</td>
<td>0</td>
<td>A8-A15</td>
</tr>
<tr>
<td>1</td>
<td>Base and Current Address</td>
<td>Write</td>
<td>CS 0</td>
<td>1</td>
<td>A0-A7</td>
</tr>
<tr>
<td></td>
<td>Current Address</td>
<td>Read</td>
<td>CS 0</td>
<td>0</td>
<td>A8-A15</td>
</tr>
<tr>
<td></td>
<td>Base and Current Word Count</td>
<td>Write</td>
<td>CS 0</td>
<td>1</td>
<td>A0-A7</td>
</tr>
<tr>
<td></td>
<td>Current Word Count</td>
<td>Read</td>
<td>CS 0</td>
<td>0</td>
<td>A8-A15</td>
</tr>
<tr>
<td>2</td>
<td>Base and Current Address</td>
<td>Write</td>
<td>CS 0</td>
<td>1</td>
<td>A0-A7</td>
</tr>
<tr>
<td></td>
<td>Current Address</td>
<td>Read</td>
<td>CS 0</td>
<td>0</td>
<td>A8-A15</td>
</tr>
<tr>
<td></td>
<td>Base and Current Word Count</td>
<td>Write</td>
<td>CS 0</td>
<td>1</td>
<td>A0-A7</td>
</tr>
<tr>
<td></td>
<td>Current Word Count</td>
<td>Read</td>
<td>CS 0</td>
<td>0</td>
<td>A8-A15</td>
</tr>
<tr>
<td>3</td>
<td>Base and Current Address</td>
<td>Write</td>
<td>CS 0</td>
<td>1</td>
<td>A0-A7</td>
</tr>
<tr>
<td></td>
<td>Current Address</td>
<td>Read</td>
<td>CS 0</td>
<td>0</td>
<td>A8-A15</td>
</tr>
<tr>
<td></td>
<td>Base and Current Word Count</td>
<td>Write</td>
<td>CS 0</td>
<td>1</td>
<td>A0-A7</td>
</tr>
<tr>
<td></td>
<td>Current Word Count</td>
<td>Read</td>
<td>CS 0</td>
<td>0</td>
<td>A8-A15</td>
</tr>
</tbody>
</table>
• Four steps are required to program the 8237:
 – (1) The F/L flip-flop is cleared using a clear F/L command
 – (2) the channel is disabled
 – (3) LSB & MSB of the address are programmed
 – (4) LSB & MSB of the count are programmed

• Once these four operations are performed, the channel is programmed and ready to use.
 – additional programming is required to select the mode of operation before the channel is enabled and started
The 8237 Connected to the 80X86

- The address enable (AEN) output of 8237 controls the output pins of the latches and outputs of the 74LS257 (E).
 - during normal operation (AEN=0), latches A & C and the multiplexer (E) provide address bus bits $A_{19} - A_{16}$ and $A_7 - A_0$
- See Figure 13-12.
Figure 13–12 Complete 8088 minimum mode DMA system.
• The multiplexer provides the system control signals as long as the 80X86 is in control of the system.
 – during a DMA action (AEN=1), latches A & C are disabled along with the multiplexer (E)
 – latches D and B now provide address bits $A_{19} - A_{16}$ and $A_{15} - A_8$

• Address bus bits $A_7 - A_0$ are provided directly by the 8237 and contain part of the DMA transfer address.

• The DMA controller provides control signals.
Memory-to-Memory Transfer with the 8237

- Memory-to-memory transfer is much more powerful than the automatically repeated MOVSB instruction.
 - most modern chip sets do not support the memory-to-memory feature

- 8237 requires only 2.0 µs per byte, which is over twice as fast as a software data transfer.

- This is not true if an 80386, 80846, or Pentium is in use in the system.
Sample Memory-to-Memory DMA Transfer

- Suppose contents of memory locations 10000H–13FFFFH are to be transferred to locations 14000H–17FFFFH.
 - accomplished with a repeated string move instruction or with the DMA controller

- Example 13–1 shows the software required to initialize the 8237 and program latch B in Figure 13–12 for this DMA transfer.
Sample Memory Fill Using the 8237

• To fill an area of memory with the same data, the channel 0 source register is programmed to point to the same address throughout the transfer.
 – accomplished with the channel 0 hold mode

• The controller copies the contents of this single memory location to an entire block of memory addressed by channel 1.

• This has many useful applications.
DMA-Processed Printer Interface

- Fig 13–13 illustrates the hardware added to Fig 13–12 for a DMA-controlled printer interface.
 - software to control this interface is simple as only the address of the data and number of characters to be printed are programmed
- Once programmed, the channel is enabled, and the DMA action transfers a byte at a time to the printer interface.
 - each time a printer ACK signal is received
Figure 13–13 DMA-processed printer interface.
SUMMARY

- The HOLD input is used to request a DMA action, and the HLDA output signals that the hold is in effect.

- When a logic 1 is placed on the HOLD input, the micro-processor (1) stops executing the program; (2) places its address, data, and control bus at their high-impedance state; and (3) signals that the hold is in effect by placing a logic 1 on the HLDA pin.
SUMMARY

- A DMA read operation transfers data from a memory location to an external I/O device.
- A DMA write operation transfers data from an I/O device into the memory.
- Also available is a memory-to-memory transfer that allows data to be transferred between two memory locations by using DMA techniques.