Linux Device Driver

Prof. Yan Luo

For UMass Lowell 16.480/552

Outline

Overview
Device driver example

Polling vs interrupt
Lab 3

Linux and device drivers

* Linux, an open OS
— Open source
— Modular
— Extensible

* Device driver
— Black boxes that hide details of a piece of hardware
— Provide well defined programming interfaces to others
— Plugged in as needed
— Necessary for new hardware
— Writing a good device driver is art ;)

The Role of Device Driver

* Device driver is a layer between application and
actual device

* Providing mechanism, NOT policy

 Example: management of graphic display

— X server: knows the h/w, and offers programming
interfaces to user

— Window/session manager: implements a policy without
the need of knowing about the h/w

— So, users can use the same window session manager on
different hardware, or different window/session on the
same hardware.

Characteristics of device driver

Support both sync and async operations
Can be opened multiple times

Exploit hardware capabilities
Do not provide policy related operations
Simple

The System (all Interface

|
O

Process Memory Filesystems ' Device i Networking
i management management § : : control § Kernel
: subsystems
|
Concurrency, Virtual Files and dirs: Ttys & ;s Features
multitasking memory the VFS device access e implemented
I I File system | Character | Network |
Arch- Memory types devices subsystem
dependent manager
code L Ol [Software
---------------- - support
Block devices | IFdrivers |
O O OO
I Hardware
CPU Memory Disks & (Ds Consoles, Network

etc. interfaces

D features implemented as modules

Classes of Device Drivers

Char device
— Access as a stream of bytes
— Open(), close(), read(), write()
— Accessed by file system nodes, e.g. /dev/console, /dev/ttySO

Block device
— Transfer data in blocks

Network device

— Exchange data over network

— Knows about packets, but not others things like “connections’
— NOT mapped to a node in file system

USB device

Building and running modules

* Device driver is designed, loaded, unloaded as
kernel modules

* Get your development system ready

— Kernel source

— Compilers
— Check your linux distribution about how to setup

 Example:
— Hello world module

Hello World Module

#include <linux/init.h>
#include <linux/module.h>
MODULE LICENSE("Dual BSD/GPL");

static int hello init(void)

{
printk (KERN_ALERT "Hello, world\n");
return o;
}
static void hello exit(void)
{
printk (KERN_ALERT "Goodbye, cruel world\n");
}

module init(hello init);
module exit(hello exit);

Compile and run

% make

make[1]: Entering directory "/usr/src/linux-2.6.10°
CC [M] /home/1ldd3/src/misc-modules/hello.o
Building modules, stage 2.
MODPOST
CC /home/1dd3/src/misc-modules/hello.mod.o
LD [M] /home/1ldd3/src/misc-modules/hello. ko

make[1]: Leaving directory ~/usr/src/linux-2.6.10°

% su

root# insmod ./hello.ko

Hello, world

root# rmmod hello

Goodbye cruel world

root#

Hands-on Exercise [30 min]

Download a copy VirtualBox
Download a Linux virtual machine
Create a helloworld.c

Compile and run

Kernel module vs user apps

Kernel module needs to do init and exit very carefully
No printf and other because no libc or other libraries
Linux kernel header files (e.g. <include/linux>)

Bugs in device driver may crash kernel

Runs in kernel space

Much greater concurrency in kernel modules
— Interrupt and interrupt handler
— Timers,
— SMP support
So, device driver must
— be reentrant, handle concurrency and avoid race conditions.

A parallel port device

* Figure: PIC based sensor <-> parallel port

Device driver for the PIC-based
sensor, connected to parallel port

e The mission
— Write a char device driver for this sensor device

* Device driver module named pp_adc
e Operations: open(), close(), read(), write()
e Using device file named /dev/pp_adcO

— Allow user apps to send commands to the sensor

* reset, ping, enable, disable, set_in_between,
set_outside, get

Walk through the Skeleton Code
[40 min]

* pp_adc.c

Interrupt

* Slides from Brey’s text book

Polling vs Interrupt, the big picture

* Polling
— Keep reading
— Consume CPU cycles
— Suitable for ultra high speed I/O

* Interrupt
— Asynchronous
— Need based service
— Best for slow speed |I/O

e Example scenario

— User app needs to sound an alarm if the sensor reading is
between 5 and 10 units

Interrupt handling

* Interrupt handler (ISR)
— Some work needs to be done when interrupt from the device happens
— The amount of work depends on the actual device

e Restrictions on ISR

— Is not executed in the context of a process
e Thus cannot transfer data to or from user space

— Must NOT sleep!
* Must not call anything like wait_event, locking a semaphore, or scheduler
* Therole
— Give feedback to device about interrupt reception
— Read/write data
— Clear INT bit
— Awaken processes sleeping on the device or waiting for some events

Blocking 1/0

 What if a driver cannot immediately satisfy the
request? E.g.
— Read when no data is available
— Write when the device is not ready to accept data

* The calling process does not care about such issues
— Programmer simply calls read or write
— Have the call return after necessary work is done

* The driver should

— “block” the process
— Put it to sleep until the request can proceed

System Call from a User Application

fd = open(“/dev/imydevice”)------ > crw-rw-rw- 250, 0 /dev/mydevice

User space

o Kernel space
\ l, mydriver
device_open() struct file_operations fops = {

.read = device_read,
.write = device_write,
?evice_read() .open = device_open,
/Ilcheck buffer size }
Il copy_to_user()
/] or sleep?
}

20

Sleeping

 What does it mean for a process to “sleep”?
— Marked as being in a special state
— Removed from scheduler’s run queue
— Will not run until some future event happens

* Rules of sleeping

— Never sleep when in atomic context (holding a lock,
disabled interrupts, etc.)

— Cannot assume the state of the system after waking up
(e.g. resources may not be available)

— Make sure some other processes can wake up

Wait Queue

* A kernel structure
— A list of processes all waiting for a specific event

— Make it possible for your sleeping process to be
found

* Managed by “wait queue head”
— wait_gqueue_head_t, is defined in <linux/wait.h>.

— be defined and initialized statically with:
« DECLARE_WAIT_QUEUE_HEAD(name);
— or dynamicly as follows:

* wait_queue head t my queue;
* init_waitqueue_head(&my_queue);

Select/poll system call

* The select/poll system call

— allows userspace applications to wait for data to arrive on
one or more file descriptors.

— call the f_ops->poll method of all file descriptors.

— Each ->poll method should return whether data is
available or not.

— If no file descriptor has any data available, then the poll/
select call has to wait for data on those file descriptors.

— It has to know about all wait queues that could be used to
signal new data.

select/poll from a User Application

250, 0 /dev/mydevice

User space

space

l mydriver

device_poll() struct file_operations fops = {

(... read = device_read,
poll_wait(filp, &p->irq_wg, w); write = dew_ce_wrlte,

} .open = device_open,

.poll = device_poll

24

Example

unsigned int example poll(struct file * file,
poll table * pt) {

unsigned int mask = 0;

if (data avail to read) mask |= POLLIN | POLLRDNORM;

if (data avail to write) mask |= POLLOUT |
POLLWRNORM;

poll wait(file, &read queue, pt);
poll wait(file, &write_ queue, pt);
return mask;

}

Then, when data is available again the driver should call:

data avail to read = 1;
wake up(&read queue);

* Review of pp_adc.c [20 min]

