
16.480/552 1

Network Processor:
Architecture and Applications

Yan Luo
For 16.480/552

16.480/552 2

Outline
n  Overview of Network Processors
n  Network Processor Architectures
n  Applications
n  Case Studies

n  Wireless Mesh Network
n  Deep Packet Inspection with Netronome NP

Card
n  A Content-Aware Switch

16.480/552 3

Packet Processing in the Future
Internet

• High processing power
• Support wire speed
• Programmable
• Scalable
• Optimized for network
applications
•  …

ASIC

General-
Purpose Processors

More packets
 &

Complex packet
processing

Future Internet

16.480/552 4

What is Network Processor ?

n  Programmable processors optimized for
network applications and protocol
processing

n  High performance

n  Programmable & Flexible

n  Optimized for packet processing

n  Main players: AMCC, Intel, Hifn, Ezchip,
Agere

Semico Research Corp. Oct. 14, 2003

16.480/552 5

Commercial Network Processors
Vendor Product Line

speed
Features

AMCC nP7510 OC-192/
10 Gbps

Multi-core, customized ISA,
multi-tasking

Intel IXP2850 OC-192/
10 Gbps

Multi-core, h/w multi-threaded,
coprocessor, h/w accelerators

Hifn 5NP4G OC-48/
2.5 Gbps

Multi-threaded multiprocessor
complex, h/w accelerators

EZchip NP-2 OC-192/
10 Gbps

Classification engines, traffic
managers

Agere PayloadPlus OC-192/
10 Gbps

Multi-threaded, on-chip traffic
management

16.480/552 6

Typical Network Processor
Architecture

SDRAM
(e.g. packet buffer)

SRAM
(e.g. routing table)

Co-processor

Network interfaces

Network Processor Bus

H/w accelerator

PE

16.480/552 7

Intel IXP2400 Network Processor

16.480/552 8

Microengine

16.480/552 9

Snapshots of IXP2xxx Based
Systems

Radisys ENP2611 PCI Packet Processing Engine

ADI Roadrunner Platform • multiservice switches,
• routers, broadband access devices,
• intrusion detection and prevention (IDS/IPS)
• Voice over IP (VoIP) gateway
• Virtual Private Network gateway
• Content-aware switch

• IPv4 Forwarding/NAT
• Forwarding w/ QoS / DiffServ
• ATM RAN
• IP RAN
• IPv6/v4 dual stack forwarding

16.480/552 10

Intel IXP425 Network Processor

16.480/552 11

StarEast: IXP425 Based Multi-
radio Platform

16.480/552 12

Applications of Network Processors

DSL modem

Wireless router

VoIP terminal

Printer server

Edge router

VPN gateway

Core router

16.480/552 13

Case Study 1:
Wireless Mesh Network

16.480/552 14

Software Stack on StarEast

16.480/552 15

Case Study 2: Deep Packet
Inspection with Netronome NP Card

n  NFE-i8000 from Netronome Systems Inc.

16.480/552 16

Setup the NP Card for Test

1.  Connect the RS232 serial cable between a host platform RS232
serial port (male DM9 or DM25 connector) and the RS232 serial
port (female DB9 connector) on the MPIC.

l  The factory default settings for RS232 are 115200 baud, 8 data bit, No
parity and 1 stop bit.

2.  Connect the Cross-over Ethernet cable between the first RJ45
Ethernet port of the Host and the RJ45 Ethernet port on the MPIC.

3.  Connect the power cable to the PSU of the Host platform and
power it up.

4.  Finally, insert the distribution media into the media drive.

16.480/552 17

Development Environment

16.480/552 18

Dynamic Host Configuration
Protocol (DHCP)

n  The DHCP service
n  assigns, upon request from a client, a dynamic IP

Address which is reserved and unused on the network.
n  Additional information such as routing and other network

information
n  Upon boot-up, the NFE’s hardware

n  Boot Monitor (RedBoot) will generate and send BOOTP
request for an IP address

n  be serviced by DHCP service.
n  DHCP service be configured to provide additional

information
n  such as the path of the Network File System (NFS)

mount point to the NFE hardware platform when it boots
the Linux operating system.

16.480/552 19

Trivial File Transfer Protocol
(TFTP)

n  The TFTP service transfers, upon request from a client,
a specified file to the client.

n  To use this service, a client must have an IP Address,
statically assigned or dynamically acquired from a DHCP
service, before it can send a file request to this service.
n  That is why we need DHCP

n  The NFE hardware platform will, after being assigned an
IP address and if so configured, download the operating
system image file using this service.
n  Most embedded system does not have a bootable disk
n  Because the processor needs a OS to manage the

resources
n  After the file has been downloaded into memory, the

platform will execute the file to boot the operating
system.

16.480/552 20

Network File System (NFS)
n  The NFS service provides a remote file system,

mounted and accessed across the network.
n  This service makes it possible for remote

systems without storage hardware, but
connected to a network, to boot the Linux
operating system.

n  Files in this file system may be read, written and/
or executed by all the clients platforms
(permissions permitting) which mount the file
system.
n  The Netronome Systems provided MontaVista

Linux Kernel image depends on this service.

16.480/552 21

Host and Target
n  Host

n  The development host
n  Run services and development software

n  Linux, Windows, Cross-compilers

n  Target: the network processor
n  Xscale - Run Linux, Initialization Tasks

n  MontaVista Linux Pro 3.1

n  Microengines - the packet processing units,
programmable with microcode.

n  Intel IXA SDK 4.2

16.480/552 22

Boot Monitor and Diagnosis
n  RedBoot
n  Flash File System
n  Diagnosis Utilities

16.480/552 23

RedBoot
n  RedBoot is a complete bootstrap environment for

embedded systems.
n  RedBoot allows download and execution of embedded

applications via serial or ethernet,
n  including embedded Linux and eCos applications.
n  can be used for both product development and deployed

products in the field (flash update and network booting).
n  Ethernet download and debug support is included,

allowing RedBoot
n  to retrieve its IP parameters via BOOTP or DHCP,
n  program images to be downloaded using TFTP.
n  Images can also be downloaded over serial, using X- or Y-

modem.

16.480/552 24

RedBoot (2)
n  RedBoot can be used to communicate with GDB (the

GNU Debugger)
n  debug applications via serial or ethernet,
n  including the ability to interrupt a running application started by

GDB.
n  An interactive command-line interface is provided to

allow
n  management of the Flash images,
n  image download,
n  RedBoot configuration, etc., accessible via serial or ethernet.
n  For unattended or automated startup, boot scripts can be

stored in Flash allowing for example loading of images from
Flash or a TFTP server.

16.480/552 25

Booting of the Board
Recovery loader initializing...

Netronome Systems NFEi8000 Boot Monitor version 1.10

SRAM channel 0: Deskew=8, DLL=8 (default=8), ExtPipeline=0
Found TCAM.
Found 8MB SRAM (1 x 8MB).
SRAM channel 2: Deskew=7, DLL=11 (default=11), ExtPipeline=0
Found 16MB SRAM (2 x 8MB).
SRAM channel 3: Deskew=7, DLL=11 (default=11), ExtPipeline=0
Found 16MB SRAM (2 x 8MB).
SRAM channel 1: Deskew=4, DLL=12 (default=12), ExtPipeline=3
DCM locked [PCB Rev = 4].
Found FPGA.

Confluence CPLD Revision 2.00
Armstrong FPGA Revision 6.14

Serial number 07010015
+... waiting for BOOTP information - enter ^C to abort
Ethernet eth0: MAC address 00:15:4d:00:02:30
IP: 192.168.10.4/255.255.255.0, Gateway: 192.168.10.1
Default server: 192.168.10.1

16.480/552 26

RedBoot(tm) bootstrap and debug environment [ROM]
Non-certified release, version 1.10 - built 11:50:02, Sep 1 2006

Platform: Netronome Systems NFEi8000 (XScale) IXP2855 A step
Portions Copyright (C) 2000-2004 Red Hat, Inc.
Portions Copyright (C) 2000-2005 Intel Corporation.
Portions Copyright (C) 2004-2006 Netronome Systems, Inc.

DRAM: 0x00000000-0x30000000, [0x00016d88-0x2ffdd000] available
FLASH: 0xc4000000 - 0xc5000000, 128 blocks of 0x00020000 bytes each.
== Executing boot script in 10.000 seconds - enter ^C to abort
RedBoot> load -r -v -m tftp -b 0x00280000 -h 192.168.10.1 zImageN
-
Raw file loaded 0x00280000-0x003311cf, assumed entry at 0x00280000
RedBoot> exec -c "console=ttyS0,115200 ip=bootp root=nfs"
Using base address 0x00280000 and length 0x000b11d0
Uncompressing Linux... done, bo.Linux version 2.4.20_mvl31-perch (root@jade) (gcc

version 3.3.1 (MontaVista 3.36CPU: XScale-IXP2800 [690541ac] revision 12 (ARMv5TE)
CPU: D undefined 5 cache
CPU: I cache: 32768 bytes, associativity 32, 32 byte lines, 32 sets
CPU: D cache: 32768 bytes, associativity 32, 32 byte lines, 32 sets
Machine: Intel Perch Island board
Ignoring unrecognised tag 0x00000000

16.480/552 27

….
IP-Config: Complete:
 device=eth0, addr=192.168.10.4, mask=255.255.255.0, gw=192.168.10.1,
 host=i8000.netronome.com, domain=, nis-domain=(none),
 bootserver=192.168.10.1, rootserver=192.168.10.1, rootpath=/opt/netronomefsNET4: Unix domain sockets 1.0/

SMP for Linux NET4.0.
RAMDISK: Couldn't find valid RAM disk image starting at 0.
Freeing initrd memory: 4096K
Looking up port of RPC 100003/2 on 192.168.10.1
Looking up port of RPC 100005/1 on 192.168.10.1
VFS: Mounted root (nfs filesystem).
…......
nothing was mounted
Starting portmap daemon: portmap.
Cleaning: /tmp /var/lock /var/run/etc/init.d/rcS: /var/run/utmp: Read-only filemINIT: Entering runlevel: 3
Starting kernel log daemon: klogd.
Starting devfsd: Started device management daemon for /dev
done.
Starting internet superserver: inetd.
Starting OpenBSD Secure Shell server: sshd.

MontaVista(R) Linux(R) Professional Edition 3.1

i8000.netronome.com login:

16.480/552 28

Flash Memory

n  Some flash file system commands
n  fis list
n  fis erase
n  fis write

16.480/552 29

Example: Store OS Kernel in Flash
Memory

16.480/552 30

16.480/552 31

16.480/552 32

16.480/552 33

Intel IXA SDK

16.480/552 34

System Block Diagram

16.480/552 35

Case Study 3: Content-aware
Switch

Switch

Media Server

Application Server

HTML Server

www.yahoo.com
Internet

GET /cgi-bin/form HTTP/1.1
Host: www.yahoo.com…

 APP. DATA TCP IP

n  Front-end of a Web cluster, only one Virtual IP
n  Route packets based on Layer 5 information

n  Examine application data in addition to IP& TCP
n  Advantages over layer 4 switches

n  Better load balancing: distributed based on content type
n  Faster response: exploit cache affinity
n  Better resource utilization: partition database

16.480/552 36

Mechanisms to Build a Content-
aware Switch

n  TCP gateway
n  An application level proxy
n  Setup 1st connection w/ client,

parses request àserver, setup 2nd
connection w/ server

n  Copy overhead

n  TCP splicing
n  Reduce the copy overhead
n  Forward packet at network level

between the network interface
driver and the TCP/IP stack

n  Two connections are spliced
together

n  Modify fields in IP and TCP header

kernel

user

kernel

user

server

server

client

client

16.480/552 37

Anatomy of TCP Splicing

Without TCP Splicing With TCP Splicing

SEQ # translation
Checksum Recalculation

Etc.

Bookkeeping of
connection states,

selection of servers,
state migration

16.480/552 38

Design Options

• Option 0: GP-based (Linux-based) switch
• Option 1: CP setup & and splices connections, DPs process packets sent
after splicing

Connection setup & splicing is more complex than data forwarding
Packets before splicing need to be passed through DRAM queues

• Option 2: DPs handle connection setup, splicing & forwarding

16.480/552 39

IXP 2400 Block Diagram
n  XScale core
n  Microengines(MEs)

n  2 clusters of 4
microengines each

n  Each ME
n  run up to 8 threads
n  16KB instruction

store
n  Local memory

n  Scratchpad
memory, SRAM &
DRAM controllers

ME ME

ME ME

ME ME

ME ME

Scratch
Hash
CSR

IX bus
interface

SRAM
controller

XScale

SDRAM
controller

PCI

16.480/552 40

Resource Allocation
n  Client-side control block list

n  record states for connections between clients and
SpliceNP, states after splicing

n  Server-side control block list
n  record states for connections between server and

SpliceNP

•  Client side CB list
•  Server side CB list
•  server selection table
•  Locks

Packet buffer

SRAM (8MB)

DRAM (256MB)

Packet queues

Scratchpad (16KB) Client ME

Microengines

Server ME

Rx ME

Tx ME

16.480/552 41

Comparison of Functionality

Step Functionality TCP Linux
Splicer

SpliceNP

1 Dequeue packet Y Y Y

2 IP header verification Y Y Y

3 IP option processing Y Y N

4 TCP header verification Y Y Y

5 Control block lookup Y Y Y

6 Create new socket and set state to LISTEN Y Y No socket, only
control block

7 Initialize TCP and IP header template Y Y N

8 Reset idle time and keep-alive timer Y Y N

9 Process TCP option Y Y Only MSS option

10 Send ACK packet, change state to SYN_RCVD Y Y Y

Processing a SYN packet
•  A lite version of TCP due to the limited instruction size of microengines.

16.480/552 42

Experimental Setup
n  Radisys ENP2611 containing an IXP2400

n  XScale & ME: 600MHz
n  8MB SRAM and 128MB DRAM
n  Three 1Gbps Ethernet ports: 1 for Client port and 2 for

Server ports
n  Server: Apache web server on an Intel 3.0GHz Xeon

processor
n  Client: Httperf on a 2.5GHz Intel P4 processor
n  Linux-based switch

n  Loadable kernel module
n  2.5GHz P4, two 1Gbps Ethernet NICs

16.480/552 43

Latency on a Linux-based
TCP Splicer

n  Latency is reduced by TCP splicing

16.480/552 44

Latency vs Request File Size

n  Latency reduced significantly
n  83.3% (0.6ms à 0.1ms) @ 1KB

n  The larger the file size, the higher the reduction
n  89.5% @ 1MB file

0

2

4

6

8

10

12

14

16

18

20

1 4 16 64 256 1024

Request file size (KB)

La
te

nc
y

on
 th

e
sw

itc
h

(m
s)

Linux-based
NP-based

Latency on the S
plicer (m

s)

16.480/552 45

Comparison of Packet
Processing Latency

16.480/552 46

Analysis of Latency Reduction
Linux-based NP-based
Interrupt: NIC raises an interrupt
once a packet comes

polling

NIC-to-mem copy
Xeon 3.0Ghz Dual processor w/
1Gbps Intel Pro 1000 (88544GC)
NIC, 3 us to copy a 64-byte packet
by DMA

No copy: Packets
are processed inside
without two copies

Linux processing: OS overheads
Processing a data packet in
splicing state: 13.6 us

IXP processing:
Optimized ISA
6.5 us

16.480/552 47

Throughput vs Request File
Size

n  Throughput is increased significantly
n  5.7x for small file size @ 1KB, 2.2x for large file @ 1MB

n  Higher improvement for small files
n  Latency reduction for control packets > data packets
n  Control packets take a larger portion for small files

0

100

200

300

400

500

600

700

800

1 4 16 64 256 1024

Request file size (KB)

Th
ro

ug
hp

ut
 (M

bp
s)

Linux-based
NP-based

