Network Processor:

!'_ Architecture and Applications

Yan Luo
For 16.480/552

16.480/552

i Outline

s Overview of Network Processors
s Network Processor Architectures
= Applications

s Case Studies
= Wireless Mesh Network

s Deep Packet Inspection with Netronome NP
Card

= A Content-Aware Switch

16.480/552 2

Packet Processing in the Future

i Internet

Future Internet

More packets
&
Complex packet
processing

16.480/552

*High processing power
*Support wire speed
*Programmable
*Scalable

*Optimized for network
applications

i What is Network Processor ?

s Proarammahla neacaccnre antimized for

NG
$700
L
$500
[| P $400
M
$300
- OI $200
$100
s Main| *
Agere

Network Processor Revenue Forecast

2007 2002 2003 2004 2005 2006 2007

Hel

S

Semico Research Corp. Oct. 14, 2003

16.480/552

zchip,

ommercial Network Processors

Product—Line Features

speed

AMCC | nP7510 OC-192/ | Multi-core, customized ISA,
10 Gbps | multi-tasking

Intel IXP2850 OC-192/ | Multi-core, h/w multi-threaded,
10 Gbps | coprocessor, h/w accelerators

Hifn SNP4G OC-48/ | Multi-threaded multiprocessor
2.5 Gbps | complex, h/w accelerators

EZchip |NP-2 OC-192/ | Classification engines, traffic
10 Gbps | managers

Agere |PayloadPlus | OC-192/ | Multi-threaded, on-chip traffic
10 Gbps | management

16.480/552 3}

Typical Network Processor
Architecture

+

Network interfaces

'SDRAM 'SRAM
(e.g. packet buffer) (e.g. routing table)

(]
i L

Co-processor H/w accelerator

Network Processor

16.480/552

l Intel IXP2400 Network Processor

72

32b

Thuf 32b
64 @ 1288 :

Hash

64/48/128
-1

Scatch

- 16KB

CSRs

-Fast_ wr -UART
w— -Timers -GPIO

-BootROM/Slow Port

i !

QDR SRAM 1 QDR SRAM 2

18 18 18 18

1V. TUV/ Vv

Microenainea

From Next Neighbor D-Push Bus S-Push Bus

128D 128 S
Xfer In Xfer In

B-op A-op

128 Next

Local Memory Neighbor

640 words

Control Store

4K Instructions

LM Addr 1

\ 2
IMAddr0 (R PrevB } @

P-Random # A _Operand B_Operand

b
TAGs 0-15 Lock Status and
0-15 LRU Logic

N T - 32-bit Execution == 6-bit
Find first bit Data Path (B-bity §

Add, shift, logical
: = Status Entry #

Multiply

CRC remain
Local CSRs

To Next Neighbor

Timers

128 D 128 S
Xfer Out Xfer Out

Timestamp

D-Pull Bus S-Pull Bus

16.480/552

Snapshots of IXP2xxx Based

i Systems

Radisys ENP2611 PCI Packet Processing Engine

emultiservice switches,
erouters, broadband access devices,

ADI| Roadrunner Platform
oIPv4 Forwarding/NAT

eForwarding w/ QoS / DiffServ eintrusion detection and prevention (IDS/IPS)
eATM RAN e\oice over IP (VoIP) gateway

oIP RAN eVirtual Private Network gateway

eIPv6/v4 dual stack forwarding eContent-aware switch

16.480/552 9

Intel IXP425 Network Processor

HSS-0 HSS-1 UTOPIA 2

WAN/Voice NPE
UTOPIA
(Max 24 xDSL PHYs)
AAL, HSS, HDLC Queue
Status
Bus

Media Independent Interface Ethemet
e — e §

Ethernet MAC 133 MHz Advanced
High-Performance Bus

) Ethemet
Media Independent Interface NPE B .

Ethernet MAC
SHA-1/MDS5,
DES, 3DES, AES

SDRAM
Controller 32-bit

8 MB-256 MB

Queue
Manager

UART Interrupt - Bridae .
921Kbaud [l| Controller | Timers g Arbiter ll 8.kB SRAM

133 MHz Advanced
High-Performance Bus

66 MHz
Advanced Peripheral Bus

UART GPIO UsSB PMU

921Kbaud Controller Controller (AHB) Exp. Bus

Controller

Intel XScale® Core PCI
266/400/533 MHz Controller
32-KB Data Cache

32-KB Instruction Cache

2-KB Mini-Data Cache

Test Logic
Unit

16 Pins JTAG 32-bit 16-bit
10.48U/004 v

Starkast: IXP425 Based Multi-
radio Platform

e rmcruewans T4 LAN T8 MnPCI ASastel

M-S g aginsering Gold Sample

—

' T L TR

“ fihidiny cron » [|
U 2 ’

(A T

Wi LU e

- e

16.480/552 11

iApplications of Network Processors

‘ DSL modem

Edge router

Core router , |
| Wireless router

& |
) y VoIP terminal
=

VPN gateway
b Printer server

16.480/552 12

Case Study 1

Wireless Mesh Network

?sh Rb ter

Wireless Mesh

Backlone

=

¥esh Router -
yith Gateway

(,atewaijnd =aili)d s

Wi-Fi
Networks

Access Pmnl e

/ﬂlwh Router

. Sensor J/

- = ~_._V " SinkNode -~
i
/ Sensor
\" \ Networks
\ < Base Station Base Station
T Cellular T WIMAX
Networks Networks

16.480/552

13

Software Stack on StarEast

Customer Applications

Radio Network Middleware

Usar

IXP425 Access Library - -

[HostAP |
NPEA NPEB USB Slave -- -
[Card |

Bootloader(Redboot)

Stareast Hardware Platform

16.480/552

14

Case Study 2: Deep Packet
*Inspection with Netronome NP Card

= NFE-i8000 from Netronome Systems Inc.

RJ45 Ethernet
connnector

and 2 adapters RS232 header

4 SFP Ports |

Reset button extension header (J102) I

| Extender I

16.480/552 15

Setup the NP Card for Test

Ethernet RS232

Connect the RS232 serial cable between a host platform RS232
serial port (male DM9 or DM25 connector) and the RS232 serial
port (female DB9 connector) on the MPIC.

o The factory default settings for RS232 are 115200 baud, 8 data bit, No
parity and 1 stop bit.

Connect the Cross-over Ethernet cable between the first RJ45
Ethernet port of the Host and the RJ45 Ethernet port on the MPIC.

Connect the power cable to the PSU of the Host platform and
power it up.

Finally, insert the distribution media into the media drive.

16.480/552 16

iDevelopment Environment

" v
ra T
Server
- DHCP
TFTP LAN
-NFS
" Y

16.480/552 17

Dynamic Host Configuration
i Protocol (DHCP)

= The DHCP service

= assigns, upon request from a client, a dynamic IP
Address which is reserved and unused on the network.

= Additional information such as routing and other network
information

= Upon boot-up, the NFE’ s hardware

= Boot Monitor (RedBoot) will generate and send BOOTP
request for an IP address

= be serviced by DHCP service.

= DHCP service be configured to provide additional
information

= such as the path of the Network File System (NFS)
mount point to the NFE hardware platform when it boots

the Linux operating system.
16.480/552 18

Trivial File Transfer Protocol
(TFTP)

he TFTP service transfers, upon request from a client,
a specified file to the client.

To use this service, a client must have an |IP Address,
statically assigned or dynamically acquired from a DHCP
service, before it can send a file request to this service.

= Thatis why we need DHCP
The NFE hardware platform will, after being assigned an

IP address and if so configured, download the operating
system image file using this service.

= Most embedded system does not have a bootable disk

= Because the processor needs a OS to manage the
resources

= After the file has been downloaded into memory, the

platform will execute the file to boot the operating
system.

16.480/552 19

Network File System (NFS)

= The NFS service provides a remote file system,
mounted and accessed across the network.

= [his service makes it possible for remote
systems without storage hardware, but
connected to a network, to boot the Linux
operating system.

= Files in this file system may be read, written and/
or executed by all the clients platforms
(permissions permitting) which mount the file
system.

= The Netronome Systems provided MontaVista
Linux Kernel image depends on this service.

16.480/552 20

i Host and Target

s Host
= [he development host

= Run services and development software
= Linux, Windows, Cross-compilers

= [arget: the network processor

= Xscale - Run Linux, Initialization Tasks
= MontaVista Linux Pro 3.1

= Microengines - the packet processing units,
programmable with microcode.
= Intel IXA SDK 4.2

16.480/552

21

i Boot Monitor and Diagnosis

= RedBoot
= Flash File System
= Diagnosis Utilities

16.480/552

22

i RedBoot

= RedBoot is a complete bootstrap environment for
embedded systems.

= RedBoot allows download and execution of embedded
applications via serial or ethernet,
= including embedded Linux and eCos applications.

= can be used for both product development and deployed
products in the field (flash update and network booting).

= Ethernet download and debug support is included,
allowing RedBoot
= to retrieve its IP parameters via BOOTP or DHCP,
= program images to be downloaded using TFTP.

= Images can also be downloaded over serial, using X- or Y-
modem.

16.480/552 23

RedBoot (2)

= RedBoot can be used to communicate with GDB (the
GNU Debugger)
= debug applications via serial or ethernet,
= including the ability to interrupt a running application started by
GDB.
= An interactive command-line interface is provided to
allow
= management of the Flash images,
= image download,
= RedBoot configuration, etc., accessible via serial or ethernet.

= For unattended or automated startup, boot scripts can be
stored in Flash allowing for example loading of images from
Flash or a TFTP server.

16.480/552 24

i Booting of the Board

Recovery loader initializing...
Netronome Systems NFEi8000 Boot Monitor version 1.10

SRAM channel 0: Deskew=8, DLL=8 (default=8), ExtPipeline=0
Found TCAM.

Found 8MB SRAM (1 x 8MB).

SRAM channel 2: Deskew=7, DLL=11 (default=11), ExtPipeline=0
Found 16MB SRAM (2 x 8MB).

SRAM channel 3: Deskew=7, DLL=11 (default=11), ExtPipeline=0
Found 16MB SRAM (2 x 8MB).

SRAM channel 1: Deskew=4, DLL=12 (default=12), ExtPipeline=3
DCM locked [PCB Rev = 4].

Found FPGA.

Confluence CPLD Revision 2.00
Armstrong FPGA Revision 6.14

Serial number 07010015

+... waiting for BOOTP information - enter ~C to abort
Ethernet ethO: MAC address 00:15:4d:00:02:30

IP: 192.168.10.4/255.255.255.0, Gateway: 192.168.10.1
Default server: 192.168.10.1

16.480/552

25

RedBoot(tm) bootstrap and debug environment [ROM]
Non-certified release, version 1.10 - built 11:50:02, Sep 1 2006

Platform: Netronome Systems NFEi8000 (XScale) IXP2855 A step
Portions Copyright (C) 2000-2004 Red Hat, Inc.

Portions Copyright (C) 2000-2005 Intel Corporation.

Portions Copyright (C) 2004-2006 Netronome Systems, Inc.

DRAM: 0x00000000-0x30000000, [0x00016d88-0x2ffdd000] available
FLASH: 0xc4000000 - 0xc5000000, 128 blocks of 0x00020000 bytes each.

== Executing boot script in 10.000 seconds - enter AC to abort
RedBoot> load -r -v -m tftp -b 0x00280000 -h 192.168.10.1 zlmageN

Raw file loaded 0x00280000-0x003311cf, assumed entry at 0x00280000
RedBoot> exec -c "console=ttyS0,115200 ip=bootp root=nfs"
Using base address 0x00280000 and length 0x000b11d0

Uncompressing LiNUX.........ccoeeeeeeeeeeeniiiiieeeeiiiic. done, bo.Linux version 2.4.20_mvi31-perch (root@jade) (gcc
version 3.3.1 (MontaVista 3.36CPU: XScale-IXP2800 [690541ac] revision 12 (ARMV5TE)

CPU: D undefined 5 cache

CPU: | cache: 32768 bytes, associativity 32, 32 byte lines, 32 sets
CPU: D cache: 32768 bytes, associativity 32, 32 byte lines, 32 sets
Machine: Intel Perch Island board

Ignoring unrecognised tag 0x00000000

16.480/552 26

IP-Config: Complete:
device=eth0, addr=192.168.10.4, mask=255.255.255.0, gw=192.168.10.1,
host=i8000.netronome.com, domain=, nis-domain=(none),
bootserver=192.168.10.1, rootserver=192.168.10.1, rootpath=/opt/netronomefsNET4: Unix domain sockets 1.0/
SMP for Linux NET4.0.
RAMDISK: Couldn't find valid RAM disk image starting at 0.
Freeing initrd memory: 4096K
Looking up port of RPC 100003/2 on 192.168.10.1
Looking up port of RPC 100005/1 on 192.168.10.1
VFS: Mounted root (nfs filesystem).
nothing was mounted
Starting portmap daemon: portmap.
Cleaning: /tmp /var/lock /var/run/etc/init.d/rcS: /var/run/utmp: Read-only filemINIT: Entering runlevel: 3
Starting kernel log daemon: klogd.
Starting devfsd: Started device management daemon for /dev
done.
Starting internet superserver: inetd.
Starting OpenBSD Secure Shell server: sshd.

MontaVista(R) Linux(R) Professional Edition 3.1

i8000.netronome.com login:

16.480/552 27

i Flash Memory

Table 2.1. Flash Images and their locations

Name Flash Address Memory Address Length Entry Point

Recovery Loader |0xC4000000 0xC4000000 0x00100000 |0x00000000
Boot Monitor 0xC4100000 0xC4100000 0x00040000 |0x00000000
Persistant storage | 0xC4200000 0xC4200000 0x00080000 |N/A

RAM Disk 0xC4300000 0x2C600000 0x00300000 |0x2C600000
Diags 0xC4D00000 0x00280000 0x000A0000{0x00280000
Linux 0xC4DA0000 | 0x00280000 0x000C0000 |0x00280000

= Some flash file system commands
= fis list
= fis erase
= fis write

16.480/552

Example: Store OS Kernel in Flash
Memory

Activate the Boot Monitor as described in Section 2.2.

Make sure the Linux Kernel image is available on a TFTP server. The image is called kernel v1.1 and is
available on the distribution at the following location:
/Hardware/NFE/i8000/1IXP/XScale/Linux/Montavista/v3.1PRO/Images/vl.1

Load the image into the NFE-18000 hardware platform RAM (replacing xyz with the TP address of the TFTP
server):

RedBoot> load -r -v -m tftp -b 0x00280000 -h xyz kernel vl.1

The following message is displayed:

Raw file locaded 0x00280000-0x003311cf, assumed entry at 0x00280000

To calculate the size of the image, subtract the first value in the message from the second value and add 1:

0x003311cf— 0x00280000 + 1 = 0xb11d0.

16.480/552 29

RedBoot= fis list

The output will list images that are stored 1n flash memory:

Name

(reserved)

RedBoot
linuxdata
ramdisk

diag

linux
FIS directory
RedBoot config

FLASH addr
0xC4000000
0xC4100000
0xC4200000
0xC4300000
0xC4DO0O0000
0xC4DA0000
0 C4FEQQOO
O0XCAFFFO00

To delete the Linux 1mage, enter:

RedBoot= fis delete linux

Mem addr

0xC4000000
0xC4100000
0xC4200000
0x2C600000
0x00280000
O0x00280000
OxXC4FEQQQO
O0XC4FFF000

and at the prompt to confirm writing, enter: y

Store the new image to flash memory:

RedBoot= fis create -b 0x280000

-1 0xc0000

16.480/552

Length Entry point
0x00100000 0x00000000
0x00040000 0x00000000
0x00080000 0xFFFFFFFF
0x00300000 0x2C600000
0x000A0000 0x00280000
0x000C0O000 0x00280000
0x0001F000 0x00000000
0x00001000 0x00000000
-r 0x280000 -e 0x280000

-f 0xC4DA0O000 linux

30

al

o

Make sure an empty image in flash memory named linuxdata is present:

RedBoot> fis list

The output will list images that are stored in flash:

Name

(reserved)
RedBoot
linuxdata
ramdisk
diag
linux

FIS directory
RedBoot config

FLASH addr

0xC4000000
0xC4100000
0xC4200000
0xC4300000
0xC4D00000
0xC4DA0000
0xXC4FE0000
0XC4FFF000

Mem addr

0xC4000000
0xC4100000
0xC4200000
0x2C600000
0x00280000
0x00280000
OxXC4FE0000
OXC4FFF000

Length

0x00100000
0x00040000
0x00080000
0x00300000
0x000A0000
0x000C0000
0x0001F000
0x00001000

If the image, linuxdata, is not present. it must be created. Enter:

RedBoot> fis create

-1 0x80000

Next. erase the contents of this area:

RedBoot> fis erase

-1 0x80000

-f 0xc4200000

-f 0xc4200000

and at the prompt to confirm writing, enter: y

Load the Linux image without a Ramdisk, enter:

RedBoot> fis load linux

16.480/552

-b 0xc4200000

Entry point

0x00000000
0x00000000
OXFFFFFFFF
0x2C600000
0x00280000
0x00280000
0x00000000
0x00000000

linuxdata

31

To execute the Linux Kernel image. enter one of the commands below. The first is to mount an NFS share as
the root filesystem and the second is to use the Ramdisk image that has been loaded into memory as the root
filesystem:

RedBoot> exec -¢ "console=tty50,115200 ip=bootp root=nfa"
or

RedBoot> exec -c¢ "console=ttyS0,115200 ip=off root=/dev/ram initrd=0x2c600000"

16.480/552 32

Intel IXA SDK

ns_nfd_wire - Developer Workbench - [(0:1) Thread8 - PC: 295 (Swapped out)]

“f File Edit View Project Buld Debug Simulation Hardware Tools Window Help

57 |6 @p == bt 2 :
x|
I 0:1) _” 183t _.1 " II%] Wl 1 I BN =) nis_nfd_wire files B
local_csr_rd[t inestamp_high] =[] Assembler Source Files
C eI 0T ot (30381 eneth, 020000000, 10036 hdr] 3¢ i
T —deta_matcl data, Llengih, Ux B hdr. sitan
_d2fa_natch_in_sran[10036 idata, 10038!length, 0xa0002000, 10038 !hdr] B) nelioname_sample.uc
.bezin packet_rx.uc
.sig :ggggiplﬁss{g peie_main_read.uc
.reg !pktbyte G g
.rez 10062 !pktcachemin pelecman; wike.uc
> xbuf_al loc($$pktxfer, 2, read) pkt_tx_1Bp.uc
A xbuf _: T&[Ilgggglgcache, 2, read_write) pkthdr_cache.uc
.sig asig
.rez [0062!d2faword gm_packet_code.uc
.reg 10062 !d2faaddr quad_gbeth_d|_system.h
.rez 10062 !d2facachenin quad_gbeth_memory.h
.rez $10062!d2faxfer rules._addresses.h
.rez |0062!d2facache ;jfan = :
i xbuf_alloc($10062!d2faxfer, 1, read) scheduler_packet.uc
e xbuf_alégg([:ggg%:gggacgghe,[l', Eggzdﬁgg]ile) =l ompiler Source Files
A imme !d2faaddr, Oxal i
alulI0062 [d2faaddr, 10038 ihdr . +, 10062!d2fsaddr] - S Inielf) L iompler ekt mods
v _d?fa_init_sran_setup[10036 'data] =-E Ex emal Dependencies
.begin [+ [Assembler Source Files
alu[10062!d2facachenin, 10062!d2faaddr, and”, 0x7] =@
-] sranlread, $10062!d2faxferd, 0, 10062!d2facachenin, 1], siz_done[10062!d2fa_siz] -
\d xbuf_copy [10062!d2facache, 0, 0, $IUUBZ'd2faxfer, 0,0, 4,0] ;sifan -3
alulT0062 Ipktcachemin, 10036 data, and, 0x7 +
dran[read, $$|Uﬂb‘2'pkleer[l 0, IlJ[lBZ'pktcachemln, 1], sig_done[10062!pkt_sig] H
4 xbuf_copy{pktcache, 0, 1, $3pkixfer, 1, 0, 1, 0] ;jfan
L Len =
m302_d2fa_new_stateff:
A _d2fa_get_packet_byte[10036 !datal =
n302_d2fa_new_state_same_bytelf:
hsssss |11 fa_get_next_word[]
i _d2fa_check_state_for_i match[lﬂﬂBZ'd?faword] pcie_cst.h
iﬁﬁgaﬁl{etdatasnze >0) v pie_fom_init.ind
4 » pcle men, helper |nd
l = -
d2t.. | o] netr..|) dl_.|Pe] st |Pe) pac. Peldis.. 7 o) T 01 F @1]F 0] F @] F 01.]F @1]F 01.] Fite... [PMThres . | ?J totiens | [Mtibre... |
ﬂ|<unnamed> .l] | AddWatch... Hefreshl
v Draml F SIam| |l_' chatchl Iv Display big endian longwords for Dlam|
Dram I Value Value Value Walue Value Value £l
= dram0x200000... S| o | o B D - B il U sl
dram(0+200... | 0x00000001 O0x091£8a30 | O0x091fchf0 0x091fcbed | 0x00000000 0x00000011 | 0x00000002 0x00000844 0x00000c00 0x000000Z1 | OxSaSaSaSa OxaSaSaSas |
dram{0x200... OxaSaSaSaS Ox5aSaSaSa| OxaSaSaS5aS OxS5aSaSaSa| OxSaSaSaSa OxaSaSaSaS Ox5aS5aSaSa OxaSaSaS5a5 | OxaSaSaSa5 OxSaSaSaSa OxaSaSaSaS OxS5aS5aSaSa =
Sram l Value Value Value Value Value Value Value Value Value Value Value Value fel
= sram[0x800000... | | | [T " =
sram[0x8000... | OxfEEEFFFE | 0x11224488 | 0x00000002 | 0x00000442 | 0x00000002 | 0x00000643 | 0x00000002 | 0x00000844 | 0xc0000010 0x00000000 | 0x00000000 | 0x00000000
sram[0x8000... | 0x00000000 | 0x00000000 | 0x00000000 | 0x00000000 | 0xc0000018 | 0x003c0180 0x003c0001 | 0x00000005 | 0x00000000 0x00000000 | 0x00000000 | 0x00000000 =
%! AddWatch...l Refresh %{ <unnamed> v | [v Enable Polling
Name Valuel Description | Scope [_‘_[I PC I Condition Codes Signalled Events I Wakeup Events 151
+ $I00621d2faxferd | | sram read xfer - Thread8 in 0:1 | + Microengine 0:0 1921(2) |
100621d2faword | 0x00000643 (2) | GPR - Thread@in 0:1 | = Microengine 0:1 | ||
S $I00621d2faxferd | | sram read xfer - Thread11 in 0:1 | = netronome_sample... | | |
read | 0xc0000408 (2) | sram read sfer - = Threads | 295 | sig_next, rule_sig, d2fa_sig.... | OR(voluntary)
+ $I00621d2faxferd | | sram read xfer - Thread10in 0:1 | Thread3 | 517 145 AND(sig_prev)
* $I0062!d2faxferd sram read xfer - Thread in 0:1 v Thread10 517 AND(sig_prev) v
For Help, select Help-=Help Topics on the main menu IXP2805 AD |Stopped Ln 179, Col 68 |INS READ

16.480/552

33

System Block Diagram

—\\

Application(s) in Usermode Legend:

Hardware/Software Interaction @—@
Usermode/Kemel Interacion ——Jl
API Call —p»

=
| -
O |usermode | S
(U [Kernel
o
% | ()
s

\ Ve ~ /

~ C PCle) <

] o
[PCle Hardware Link]
L J ¥ PCI .

ME .
E Application
o y
= eemeeemeemeemmeenaenneaean .
S| (omwane) :
E [Resource Manager PK| Driver
L
L
2

Kernel

Usermode

PKI Library
. J

16.480/552

Case Study 3: Content-aware

Switch

|

O

IP TCP | APP. DATA

GET /cgi-bin/form HTTP/1.1
Host: www.yahoo.com...

NWW.yahoo.com

Switch

= Front-end of a Web cluster, only one Virtual IP

Media Server
G
—
Application Server

)
=

HTML Server

S

= Route packets based on Layer 5 information

= Examine application data in addition to IP& TCP
= Advantages over layer 4 switches

= Better load balancing: distributed based on content type
= Faster response: exploit cache affinity
= Better resource utilization: partition database

16.480/552

35

Mechanisms to Build a Content-

aware Switch

= [CP gateway

= An application level proxy

= Setup 18t connection w/ client,
parses request > server, setup 2"
connection w/ server

= Copy overhead

server

m TCP splicing

Reduce the copy overhead

= Forward packet at network level
between the network interface
driver and the TCP/IP stack

= Two connections are spliced
together
= Modify fields in IP and TCP header

server

16.480/552

1P

NET1

user

kernel

lent

user

kernel

client

36

Anatomv of TC.P S

Bookkeeping of
I =connection states,
Iel

servers,
tate migration
SYN/AC SYN/AC
S ACK s
W W
By .

{; $EQ # trarkiation S
svvack=~" ¥ Q # translation "Ny ace—
%@,ksum Regalculatiop) .«
W EtC CK/Request
Response Response

AC H
esponse
—
. Server—side

Client—side Server—side : Client—side Server

. Server Client 1
Client socket on socket on socket on socket .on
the switch @ the switch the switch the switch
a

Without TCP Splicing

With TCP Splicing

16.480/552 37

RAM | RAM

User User
DRAM CPU CPU
User CPU Kemnel Kemnel

NIC.'-' " .\HC 7 DRAM usar DRAM usar
— - . DPs I: - Hie DPs —{H—=
i = i

(a) ®) ©
*Option 0: GP-based (Linux-based) switch
*Option 1: CP setup & and splices connections, DPs process packets sent
after splicing
Connection setup & splicing i1s more complex than data forwarding
Packets before splicing need to be passed through DRAM queues

*Option 2: DPs handle connection setup, splicing & forwarding

16.480/552 38

iIXP 2400 Block Diagram

= XScale core
= Microengines(MESs)

= 2 clusters of 4
microengines each
= Each ME
= run up to 8 threads

= 16KB instruction
store

= Local memory

= Scratchpad
memory, SRAM &
DRAM controllers

16.480/552 39

Resource Allocation

RAM (8MB)

* Client side CB list

« Server side CB list

* server selection table
* Locks

DRAM (256MB)
Packet buffer

Scratchpad (16KB)

Packet queues

Client=side-control-block list

record states for connections between clients and
SpliceNP, states after splicing

Server-side control block list
record states for connections between server and

SpliceNP

Microengines

Rx ME

AN

Client ME

Server ME

~

Tx ME

16.480/552

40

i Comparison of Functionality

* A lite version of TCP due to the limited instruction size of microengines.
Processing a SYN packet

Step | Functionality TCP | Linux SpliceNP
Splicer
1 Dequeue packet Y Y Y
2 IP header verification Y Y Y
3 IP option processing Y Y N
4 TCP header verification Y Y Y
5 Control block lookup Y Y Y
6 Create new socket and set state to LISTEN Y Y No socket, only
control block
Initialize TCP and IP header template Y Y N
Reset idle time and keep-alive timer Y Y N
Process TCP option Y Y Only MSS option
10 Send ACK packet, change state to SYN_RCVD |Y Y Y

16.480/552

41

i Experimental Setup

= Radisys ENP2611 containing an IXP2400
= XScale & ME: 600MHz
= 8MB SRAM and 128MB DRAM

= Three 1Gbps Ethernet ports: 1 for Client port and 2 for
Server ports

= Server. Apache web server on an Intel 3.0GHz Xeon
processor

= Client: Httperf on a 2.5GHz Intel P4 processor
= Linux-based switch

= Loadable kernel module
= 2.5GHz P4, two 1Gbps Ethernet NICs

16.480/552 42

Latency on a Linux-based

iTCP Splicer

0
5

| | —&— Direct connection

1 4 16 64 256 1024
Request file size (KB)

= Latency is reduced by TCP splicing

16.480/552

43

Latency vs Request File Size

20

14
12
10

8

(sw) J9o11dg ay) uo Aousien

o N MO

= Latency reaucea signiticanuy

18
16

—&— Linux-based

—m— NP-based

16

Request file size (KB)

= 83.3% (0.6ms - 0.1ms) @ 1KB

= The larger the file size, the higher the reduction

= 89.5% @ 1MB file

16.480/552

44

Comparison of Packet

Processing Latency

Table S: Processing latency for control and data packets

Packet IXP2400 Linux Latency
Type Microengine | Latency (us) | Latency (us) | reduction

Control SYN clientME 7.2 48 85%
Packet | ACK/Request clientME 8.8 52 83%
SYN/ACK serverME 8.5 42 80%

Data Data serverME 6.5 13.6 52%
Packet ACK clientME 6.5 13.6 52%

16.480/552 45

Analysis of Latency Reduction

ux-based

NP-based

Interrupt: NIC raises an interrupt
once a packet comes

polling

NIC-to-mem copy

Xeon 3.0Ghz Dual processor w/
1Gbps Intel Pro 1000 (88544GC)
NIC, 3 us to copy a 64-byte packet
by DMA

No copy: Packets

are processed inside

without two copies

Linux processing: OS overheads

Processing a data packet in
splicing state: 13.6 us

|XP processing:
Optimized ISA

6.5 us

16.480/552

46

Throughput vs Request File

S .
800
700 F O Linux-based
60

0
m NP-based
0

1 4 16 64 256 1024

Request file size (KB)

n
o
o

w
o
o

Throughput (Mbps)
N
o
o

N
o
o

-
o
o

o

= Throughput is increased significantly
= 5.7x for small file size @ 1KB, 2.2x for large file @ 1MB

= Higher improvement for small files
= Latency reduction for control packets > data packets
= Control packets take a larger portion for small files

16.480/552 47

