
 CS 415 Algorithm Analysis                            Mid-term 2                              Fall 2014  
 

Practice problem Solutions (or hints) 
                                 

1) Shown below is a weighted, undirected graph G = <V,E> on which Kruskal’s 
algorithm  is used to find the minimum spanning tree. Exhibit how the data 
structure for disjoint sets will change after each step of Kruskal’s 
algorithm. (You can ignore path compression while performing FIND.) 

 
 

 
 
initial: each vertex in a set by itself.  
Iteration 1: choose the next smallest weight edge, namely (A, C) and 
perform FIND(A), FIND(C). Since FIND(A) = A and FIND(C) = C and they are 
different UNION is performed. The result is: 
{A, C}, {B}, {D}, {E}, {F}. 
Iteration 2: next smallest weight edge is (B,D). Since they belong to two 
different components, UNION is performed. The result is: 
{A, C}, {B,D}, {E}, {F} etc. 
 
I have not shown the sets in the form of trees. You should. 

 
   

2) Exercise  5.5, 5.9, 5.16, 5.17 
 
5.5: (a) spanning tree does not change. Proof: consider the sorted order of 
edge weights considered by Kruskal’s algorithm. Adding 1 each edge 
weight does not change the sorted order so the same spanning tree will be 
produced by Kruskal’s algorithm. Since Kruskal’s algorithm always 
produces the minimum spanning tree, the claim follows. 
 
(b) shortest path can change. Consider a very simple example: 
 
V = {1, 2, 3}, E = {(1, 2), (2, 3), (1, 3)} where w(1,2) = 0.5, w(1,3) = 0.5 and 
w(2, 3) = 1.1. The shortest path from 1 to 3 is 1 ->2 ->3 of weight 1. But if 
all the weights are increased by 1, the new shortest path from 1 to 3 is 1-
>3 of weight 2.2. (The path 1->2->3 now weighs 3.) 
 

 
 



 
       5. 9: I have not provided any proof. You should. Some of the claims may 
require knowing Prim’s algorithm which we did not cover so I have omitted 
them. 

The following statements may or may not be correct. In each case, either prove it (if it is 
correct) or give a counterexample (if it isn’t correct). Always assume that the graph G = 
(V, E ) is undirected and connected. Do not assume that edge weights are distinct unless 
this is specifically stated. 

(a)  If graph G has more than |V | − 1 edges, and there is a unique heaviest edge, then this 
edge cannot be part of a minimum spanning tree.  

FALSE 

(b)  If G has a cycle with a unique heaviest edge e, then e cannot be part of any MST.  

TRUE 

(c)  Let e be any edge of minimum weight in G . Then e must be part of some MST.  

TRUE 

(d)  If the lightest edge in a graph is unique, then it must be part of every MST.  

TRUE 

(e)  If e is part of some MST of G , then it must be a lightest edge across some cut of G.  

TRUE 

(f)  If G has a cycle with a unique lightest edge e, then e must be part of every MST. 

(g)  The shortest-path tree computed by Dijkstra’s algorithm is necessarily an MST.  

FALSE.  

(h)  The shortest path between two nodes is necessarily part of some MST.  

FALSE 

(i)  Prim’s algorithm works correctly when there are negative edges.  

(j)  (For any r > 0, define an r -path to be a path whose edges all have weight < r.) If G 
contains an r-path from node s to t, then every MST of G must also contain an r-path 
from node s to node t.  

 



5.16.  Prove the following two properties of the Huffman encoding scheme.  

(a)  If some character occurs with frequency more than 2/5, then there is guaranteed to be 
a codeword of length 1.  

(b)  If all characters occur with frequency less than 1/3, then there is guaranteed to be no 
codeword of length 1.  

You can show both claims by induction of the number of code symbols.  

For (a), Try to show this for k = 4 as the base case. (For k <= 3, it is obvious.) The 
induction step is now easy. Look at what happens in the first step. It is easy to see 
that a character of frequency more than 2/5 will never get selected in the first step. 
(Why not?) If it does, then there are at least two more symbols each with higher 
frequency. This is a contradiction! 

5.17.  Under a Huffman encoding of n symbols with frequencies f1, f2, . . . , fn, what is the 
longest a codeword could possibly be? Give an example set of frequencies that would 
produce this case.  

Answer: n-1. It is left for you to construct a set of frequencies. (Make sure to create 
one for a general n, not for specific n.) 

 
 

3) Which of the following are true of the longest path problem (from s to t for 
two specified vertices s and t) in a weighted, directed graph G? 

 
(a) there is an O(n+m) time algorithm for this problem. 

 
No. Only if it is a DAG we know how to compute it in O(n+m) time. 
 

(b) Changing the weight w to –w on each edge will change the problem to 
the shortest path problem. 
 
True. 
 

(c) Adding a fixed constant c to the weight of each edge will leave the 
shortest path unchanged. 
 
False. See above. 

 
4) A greedy algorithm for the scheduling problem chooses the most profitable 

task first, remove all the tasks that overlap with the chosen task(s), and 
repeat the process. Give an example to show that this algorithm does not 
produce an optimal solution. 
 
Example: (1, 4) à  10, (3, 8)à  15, (7, 10) à  10 
  



5) I have a collection of mp3 files containing n songs of lengths t1, t2, …, tn. I 
want to create a CD by recording these songs. But the time for which the 
CD plays is T which is less than the sum t1 + t2 + … + tn so I have to leave out 
some songs. I want to minimize the wasted space on the CD. Formulate this 
problem as a knapsack problem. (Specifically, assume that there is a 
function Knapsack(w[1:n], p[1:n], C) that has been implemented – show 
how you can use this function to solve the given problem.) 
 
Use the duration as both profit and weight and set the knapsack capacity as T and 
call the knapsack( t[1:n], t[1:n, T). The output from this call is the answer to the 
given problem. 

 
6) Shown below is a graph G with source s = and terminal t = . Also shown is a 

current flow f. Construct the residual graph Gf. Apply Edmunds-Karp 
algorithm to find the augmenting path and use it to find an improved flow. 
Is the new flow optimal? 

 
 

Left as exercise. 

 



7)  

 
 
Hint: The problem can be represented as the shortest path problem in a directed 
acyclic graph. 
 

8)    

 
 
Hint: the problem can be formulated as a linear programming problem. We have not 
discussed the simplex algorithm yet so you can skip this. 

 
 



9)  Which of the following are true of Dijkstra’s algorithm? 
 

(i) it requires edge weights to be non-negative. 
 
TRUE. 
 
(ii) it requires edge weights to satisfy triangle inequality. 
 
FALSE. 
 
(iii) adding a constant to each edge will not change the shortest path 
between any two vertices. 

 
             FALSE. (See above.) 
 

(iv) all pairs shortest path can be solved by making n calls to Dijkstra’s 
algorithm. 
 
TRUE. 
 

   10)   A road map is represented as a weighted directed graph in which each 
node represents a town and the edges represent roads connecting towns. There 
are two weights on each edge - <w1, w2> where w1 is the time taken to drive on 
the road, and w2 is the time taken to travel by bicycle. You are also given two 
vertices s (home) and t (the campus). You are to design an algorithm that finds 
the shortest path from s to t in this graph using the following mode of 
transportation: you have a bicycle at home, you can start riding the bike to some 
town and then travel by bus the rest of the way to reach the campus. You can 
exercise the two extreme options as well – ride the bike all the way, or ride the 
bus the entire way. The goal is to minimize the total time taken to reach t from s. 
The problem is the following: by making a single call Dijkstra’s algorithm (that 
solves the single source shortest path on a standard graph), solve this variation. 
Make sure you understand the problem clearly: the standard Dijkstra’s algorithm 
takes as input a graph with one weight on each edge, but the problem at hand has 
two weights on each edge. You have to create a single new graph G’ that uses both 
weights of G, but G’ itself has only one weight on each edge. Further, you can only 
make a single call to Dijkstra’s algorithm. 

 
Create a new graph by making two copies of the given graph where the first part of the 
graph allows travel by incycle, and the second one by bus. Then make jump from vertex x 
of first copy to vertex x of second copy with edge of weight 0. Then run Dijkstra’s algorithm 
on this graph. 

 


