Lab 4: Strassen method for matrix multiplication

Professor: Ronaldo Menezes

TA: Ivan Bogun

Department of Computer Science Florida Institute of Technology

September 15, 2014

1 Problem statement

Standard way for matrix multiplication takes $O(n^3)$, which is pretty expensive. In 1969 Strassen was the first to show that matrix multiplication is in fact $o(n^3)$ by presenting a method whose asymptotic complexity is $O(n^{\log 7})$. In this lab you are asked to implement it using recursion.

1.1 Strassen method

Assume we are to calculate the product $C = A \cdot B$ where $A, B \in \mathbf{R}^{2^n \times 2^n}$ for some n > 0, then we can rewrite the multiplication as a product of blocks of size $2^{n-1} \times 2^{n-1}$

$$\begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \cdot \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$$

Step 1 Create matrices $A_{11},...,B_{11},...,C_{11}$. Each matrix should have a size of 2^{n-1} .

Step 2 Calculate matrices $S_1, ..., S_{10}$ which are linear combinations of matrices from the step 1. Matrices $S_1, ..., S_{10}$ are given by

$$S_1 = B_{12} - B_{22},$$

$$S_2 = A_{11} + A_{12},$$

$$S_3 = A_{21} + A_{22},$$

$$S_4 = B_{21} - B_{11},$$

$$S_5 = A_{11} + A_{22},$$

$$S_6 = B_{11} + B_{22},$$

$$S_7 = A_{12} - A_{22},$$

$$S_8 = B_{21} + B_{22},$$

$$S_9 = A_{11} - A_{21},$$

$$S_{10} = B_{11} + B_{12}.$$

Step 3 Use matrices calculated at step 2 to recursively calculate matrix products $P_1, ..., P_7$ defined as:

$$P_1 = A_{11} \cdot S_1,$$

$$P_2 = S_2 \cdot B_{22},$$

$$P_3 = S_3 \cdot B_{11},$$

$$P_4 = A_{22} \cdot S_4,$$

$$P_5 = S_5 \cdot S_6,$$

$$P_6 = S_7 \cdot S_8,$$

$$P_7 = S_9 \cdot S_{10}.$$

Step 4 Compute matrices $C_{11}, C_{12}, C_{21}, C_{22}$ from matrices P_i :

$$C_{11} = P_5 + P_4 - P_2 + P_6,$$

$$C_{12} = P_1 + P_2,$$

$$C_{21} = P_3 + P_4,$$

$$C_{22} = P_5 + P_1 - P_3 - P_7.$$

2 Implementation

Implement the class *Matrix.java* ¹.

```
public class Matrix {
       private double[][] elements;
                                                   // elements of the matrix
                                                                  // size
       private int n;
       public Matrix(double[][] elements_) {
              // constructor
       public Matrix multiplyStrassen(Matrix b) {
       // implement Strassen method for matrix multiplication. This function
           should be recursive.
       }
       public Matrix multiply(Matrix b) {
              implement regular matrix multiplication method (hint: you might
           want to use it for testing)
       public boolean equals(Matrix b) {
       // check if matrices are equal. Compare elements up to certain
           precision, say 1e-6, e.g.
       // abs(this.elements[i][j]-b.elements[i][j])<1e-6</pre>
       public String toString() {
       // return string representation of the matrix
       }
       public Matrix add(Matrix b) {
       // addition
```

¹You can copy code for this file from: Matrix.java

```
public Matrix subtract(Matrix b) {
   // subtraction
}
```

3 Sample input-output

Create the file *Driver.java* ² whose modified version will be used for testing. You can always assume that the input will be a square matrices whose size is a factor of 2.

3.1 Input

3.2 Output

```
Matrix of the size [4,4]
1.0 3.0 4.0 5.0
2.0 4.0 3.0 5.0

Driver.java
```

1.0 3.0 4.0 5.0 2.0 4.0 3.0 5.0

Are matrices the same? true Matrix of the size [4,4] 21.0 55.0 8.0 55.0

23.0 57.0 9.0 60.0

21.0 55.0 8.0 55.0

23.0 57.0 9.0 60.0

4 Grade breakdown

1 '	. 1
basis	grade
Implementation	(60)
Strassen multiplication	40
regular multiplication	5
other	15
Comments	(20)
General	10
Javadocs	10
Overall	(20)
Compiled	5
Style	5
Runtime	10
Total	100