Infosec 1 Software Security: Heap Overflows, Defenses Oct. 29, 2014

Heap Overflows

* What is on the heap?

* Also of interest: the Data section: and variables
// Heap Buffer Overflow code 1 // File Pointer Overwrite
#define BUFSIZE 16 #define BUFSIZE 16
#define OVERSIZE 8 /* overflow buf2 by OVERSIZE bytes */ int main(int argc, char **argv)
int main() {
{ FILE *tmpfd;
u_long diff; static char buf[BUFSIZE], *tmpfile;
char *bufl = (char *)malloc(BUFSIZE);
char *buf2 = (char *)malloc(BUFSIZE); tmpfile = »/tmp/vulprog.tmp"”;

printf("before: tmpfile = %s\n", tmpfile);
diff = (u_long)buf2 - (u_long)bufil;

printf("bufl = %p, buf2 = %p, diff = Ox%x bytes\n", printf("Enter one line of data to put in %s: ",
bufl, buf2, diff); tmpfile);
gets(buf);
memset(buf2, 'A', BUFSIZE-1);
buf2[BUFSIZE-1] = '\@'; printf("\nafter: tmpfile = %s\n", tmpfile);
printf("before overflow: buf2 = %s\n", buf2); tmpfd = fopen(tmpfile, "w");

if (tmpfd == NULL) exit(ERROR);
memset(bufl, 'B', (u_int)(diff + OVERSIZE));
printf("after overflow: buf2 = %s\n", buf2); fputs(buf, tmpfd);
fclose(tmpfd);
return 0; }

* What does the code print?

* Address manipulation: a can modify a

Exploiting a Heap Overflow

* Targets:)

e Function Pointers

o Used for)

o Implementation: stored in

Upon call, copied into the !

* Return-to-libc: Directly call ! Assumes

Vulnerabilities

Obviously vulnerable functions:

Replacements (bounded):

Defenses

* Programmer:

e Compiler:

* System:

Programmer-level Solutions

e Usea

programming language:

e Libraries that

: LibSafe

* Program better! Problem:

Compiler-level solutions

* Always

e StackGuard

: random value stored in

o Check

e StackShield:

o Recall: (even w/

) need to guess the

o Starting stack/heap/etc. address set randomly in a range

System Solutions

e Grow the stack backwards?

o Doesn’t prevent

(ASLR)

* Non- memory
o AMD: bit; Intel: bit. Mark each page of memory
o Prevents inside that page

