
9/9/2014

1

Information Retrieval
INFO/CS 4300

• Instructor: Chris Buckley

– Office hours Wednesdays 11am Gates 231

• Piazza will be the main communication tool

– https://piazza.com/cornell/fall2014/info4300/home

– Lecture notes will appear there.

– TA office hours and locations appear there.

Admin & logistics

• Course enrollment is now open

• CMS is being used for assignments. See Piazza message for links to it
and documentation. If you sign in to CMS and do NOT see Info 4300 as
a course for you, tell us either through Piazza (private to instructors)

• First Critique due today (paper by Brin,Page)

Previous lectures:

• Lectures 1 & 2: Overview of course and Search Engines

– Material in Croft chapters 1 and 2. Manning 1

• Lecture 3: Test collection evaluation

– In Croft Chap 8, Manning Chap 8, and lecture notes

• Lecture 4: Start detailed Search Engines

– Text Acquisition - Web Crawling

– In Croft Chap 3, Manning Chap 20

• Today: Finish Text Acquisition, start Indexing.

– Croft Chap 4, Manning Chap 2

Indexing Process

https://piazza.com/class/hz0gtmi8y6v6eo?cid=4

9/9/2014

2

Text Acquisition and Web Crawlers

• Web crawlers

– Retrieving web pages

– Crawling the web

• Desktop crawlers

• Document feeds

– File conversion

– Storing the documents

– Removing noise

BigTable

• Google’s document storage system

– http://research.google.com/archive/bigtable.html

– Customized for storing, finding, and updating web pages

– Handles large collection sizes using inexpensive computers

Tablet server

BigTable

• No query language, no complex queries to optimize

• Only row-level transactions

• Tablets are stored in a replicated file system that is accessible by all
BigTable servers

• Any changes to a BigTable tablet are recorded to a transaction log,
which is also stored in a shared file system

• If a tablet crashes, easy recovery from transaction logs

• If any tablet server crashes, another server can immediately read the
tablet data and transaction log from the file system and take over

BigTable

• Logically organized into rows

• A row stores data for a single web page

• Combination of a row key and a column key point to a single cell in the
row, and then a timestamp value points to the data within the cell.

9/9/2014

3

BigTable

• BigTable can have a huge number of columns per row

– all rows have the same column groups

• Eg, content, language, anchor text

– not all rows have the same columns

– important for reducing disk reads to access document data

• Or reducing memory accesses if all in memory!

• Rows are partitioned into tablets based on their row keys

– simplifies determining which tablet is appropriate

Sample Google Tables (2006!)

Project
Name

Table Size
(TB)

Compression
ratio

cells
(billions)

Column
Families

% in
memory

Crawl 800 11% 1000 16 0

Google
Analytics

200 14% 80 1 0

Google
Earth

0.5 64% 7 2 33

Google
Earth

70 - 9 8 0

Overview again

• Web crawlers

– Retrieving web pages

– Crawling the web

• Desktop crawlers

• Document feeds

– File conversion

– Storing the documents

– Removing noise

Removing Noise

• Many web pages contain text, links, and pictures that are not directly
related to the main content of the page

• This additional material is mostly noise that could negatively affect the
ranking of the page

• Techniques have been developed to detect the content blocks in a web
page

– Non-content material is either ignored or reduced in importance in
the indexing process

9/9/2014

4

• Noise Example

Finding Content Blocks

• Cumulative distribution of tags in the example web page

– Main text content of the page corresponds to the “plateau” in the
middle of the distribution

Indexing Process Processing Text

• Converting documents to a more consistent set of index terms

• Why?

– Sometimes not clear where words begin and end

• Not even clear what a word is in some languages
– e.g., Chinese, Korean

– Matching the exact string of characters typed by the user is too
restrictive

• i.e., it doesn’t work very well in terms of effectiveness (often)

– Not all words are of equal value in a search

9/9/2014

5

Text transformation

•Word occurrence statistics

• Tokenizing

• Stopping and stemming

Text Statistics

• Many statistical characteristics of word occurrences are
predictable

• Retrieval models and ranking algorithms depend heavily
on them

–e.g., important words occur often in documents but
are not high frequency in collection [Luhn, 1958]

Distribution of word frequencies

• is very skewed

frequency

rank in frequency list

Zipf’s Law

• Distribution of word frequencies is very skewed

– a few words occur very often, many words hardly ever occur

– e.g., two most common words (“the”, “of”) make up about 10% of all
word occurrences in text documents

• Zipf’s “law”:

– observation that rank (r) of a word times its frequency (f) is
approximately a constant (k)
• assuming words are ranked in order of decreasing frequency

– i.e., r*f k or r * Pr c, where Pr is probability of word occurrence
for the rth ranked word and c 0.1 for English

9/9/2014

6

Zipf’s Law

• Zipf’s Law relates a term’s frequency to its rank
– frequency 1/rank
– There is a constant k such that freq * rank = k

• The most frequent words in one corpus may be rare words in another corpus
– Example: “computer” in CACM vs. National Geographic

• Each corpus has a different, fairly small “working vocabulary”

These properties hold in a wide range of languages

Zipf’s Law

• Useful as a rough description of the frequency
distribution of words in human languages

• Behavior occurs in a surprising variety of situations

–References to scientific papers

–Web page in-degrees, out-degrees

–Royalties to pop-music composers

Zipf’s Law (Tom Sawyer) News Collection (AP89) Statistics

Total documents 84,678
Total word occurrences 39,749,179
Vocabulary size 198,763
Words occurring > 1000 times 4,169
Words occurring once 70,064

9/9/2014

7

Top 50 Words from AP89 Zipf’s Law for AP89 (log plot)

Zipf’s Law

• What is the proportion of words with a given frequency?

– Word that occurs n times has rank rn= k/n

– Number of words with frequency n is

• rn − rn+1 = k/n − k/(n + 1) = k/n(n + 1)

– Proportion found by dividing by total number of words = highest rank
= k

– So, proportion with frequency n is 1/n(n+1)

Example

• Proportions of words occurring n times in 336,310 TREC documents

9/9/2014

8

Vocabulary Growth

• As corpus grows, so does vocabulary size

– Fewer new words when corpus is already large

• Observed relationship (Heaps’ Law):

v = k * nβ

v is vocabulary size (number of unique words),

n is the number of words in corpus,

k, β are parameters that vary for each corpus

Heaps’ Law: AP89 Example

Heaps’ Law Predictions

• Predictions for TREC collections are accurate for large
numbers of words

–e.g., first 10,879,522 words of the AP89 collection
scanned

–prediction is 100,151 unique words

–actual number is 100,024

• Predictions for small corpora (i.e. < 1000 words) are
much worse

GOV2 (Web) Example

9/9/2014

9

Larger Corpora

• Heaps’ Law works with very large corpora

– new words occurring even after seeing 30 million!

– parameter values different than typical TREC values

• New words come from a variety of sources

• spelling errors, invented words (e.g. product, company names), code, other
languages, email addresses, etc.

• Search engines must deal with these large and growing vocabularies

Text transformation

•Word occurrence statistics

• Tokenizing

• Stopping and stemming

Tokenizing

• Forming words from sequence of characters

• Surprisingly complex in English, can be harder in other languages

• Early IR systems:

– any sequence of alphanumeric characters of length 3 or more

– terminated by a space or other special character

– upper-case changed to lower-case

Tokenizing

• Example:

– “Bigcorp's 2007 bi-annual report showed profits rose 10%.” becomes

– “bigcorp 2007 annual report showed profits rose”

• Too simple for most search applications Why? Too much information
lost

– Small decisions in tokenizing can have major impact on effectiveness
of some queries

9/9/2014

10

Tokenizing Problems

• Small words can be important in some queries, usually in combinations

• xp, ma, pm, ben e king, el paso, master p, gm, j lo, world war II

• Both hyphenated and non-hyphenated forms of many words are
common

– Sometimes hyphen is not needed

• e-bay, wal-mart, active-x, cd-rom, t-shirts

– At other times, hyphens should be considered either as part of the
word or a word separator

• winston-salem, mazda rx-7, e-cards, pre-diabetes, t-mobile, spanish-speaking

Tokenizing Problems

• Special characters are an important part of tags, URLs, code in
documents

• Capitalized words can have different meaning from lower case words

– Bush, Apple

• Apostrophes can be a part of a word, a part of a possessive, or just a
mistake

– rosie o'donnell, can't, don't, 80's, 1890's, men's straw hats, master's
degree, england's ten largest cities, shriner’s

Tokenizing Problems

• Numbers can be important, including decimals

– nokia 3250, top 10 courses, united 93, quicktime 6.5 pro, 92.3 the
beat

• Periods can occur in numbers, abbreviations, URLs, ends of sentences,
and other situations

– I.B.M., Ph.D., cs.umass.edu, F.E.A.R.

• Note: tokenizing steps for queries must be identical to steps for
documents

Tokenizing Process

• First step is to use parser to identify appropriate parts of document to
tokenize

• Defer complex decisions to other components

– word is any sequence of alphanumeric characters, terminated by a
space or special character, with everything converted to lower-case

– everything indexed

– example: 92.3 one possibility is → 92 3 but search finds documents
with 92 and 3 adjacent

9/9/2014

11

Tokenizing Process

• Not that different than simple tokenizing process used in past

• Examples of rules sometimes used with TREC

– Apostrophes in words ignored

• o’connor → oconnor bob’s → bobs

– Periods in abbreviations ignored

• I.B.M. → ibm Ph.D. → phd

What does Google Do?

Stopping

• Function words (determiners, prepositions) have little meaning on their
own

• High occurrence frequencies

• Treated as stopwords (i.e. removed)

– reduce index space, improve response time, improve effectiveness

• Can be important in combinations

– e.g., “to be or not to be”

Stopping

• Stopword list can be created from high-frequency words or based on a
standard list

• Lists are customized for applications, domains, and even parts of
documents

– e.g., “click” is a good stopword for anchor text

• Best policy is to index all words in documents, make decisions about
which words to use at query time

9/9/2014

12

Stemming

• Many morphological variations of words

– inflectional (plurals, tenses)

– derivational (making verbs nouns etc.)

• In most cases, these have the same or very similar meanings

• Stemmers attempt to reduce morphological variations of words to a
common stem

– usually involves removing suffixes

• Can be done at indexing time or as part of query processing (like
stopwords)

Stemming

• Generally a small but significant improvement in effectiveness

– can be crucial for some languages

– e.g., 5-10% improvement for English, up to 50% in Arabic

Words with the Arabic root ktb

Stemming

• Two basic types

– Dictionary-based: uses lists of related words

– Algorithmic: uses program to determine related words

• Algorithmic stemmers

– suffix-s: remove ‘s’ endings assuming plural

• e.g., cats → cat, lakes → lake, wiis → wii

• Many false positives: supplies → supplie, ups → up

• Some false negatives: mice mice (should be mouse)

9/9/2014

13

Lovins’ stemmer

• For each word,

– Find the longest suffix on the word

• Check for exceptions for that suffix (go to next longest if one)

– Remove the suffix

– Check for a recode rule

• Recode the remaining stem
– believ -> belief

– Revolv -> revolut

Beginning of suffix list

• struct suftab {
char *suf; /* actual suffix */
short sufl; /* suffix length */
short c_code; /* condition code */
} suftab[] = { /* actual suffix table as defined above */

{"erentiations",12,36}, /* added by grb */
{"alistically",11,1},
{"antaneously",11,0}, /* added by grb */
{"arizability",11,0},
{"erentiation",11,36}, /* added by emv */
{"izationally",11,1},
{"antialness",10,0},
{"arisations",10,0},
{"arizations",10,0},
{"entialness",10,0},
{"entiations",10,0}, /* added by grb */
{"ifications",10,25}, /* added by eaf */

Sample recode rules

• case 0: /* iev -> ief */
*endword = 'f';
break;

case 5: /* olv -> olut */
*endword++ = 'u';
*endword++ = 't';
*endword = '\0';
break;

Stemming (Manning et al examples)

• English: Such an analysis can reveal features … more biologically
transparent

• Lovins: such an analys can reve featur … mor biolog transpar

• Porter: such an analysi can reveal feature … more biolog transpar

• Paice: such an analys can rev feat … mor biolog transp

