Information Retrieval INFO/CS 4300

- Instructor: Chris Buckley

 Office hours Wednesdays 11am Gates 231
- Piazza will be the main communication tool

 https://piazza.com/cornell/fall2014/info4300/home
 - <u>https://piazza.com/comen/fail2014/inf04300/</u>
 Lecture notes will appear there.
 - TA office hours and locations appear there.
 - Office hours have changed (we now have 3 TAs instead of 4)

Course Admin

- Critique 1, Homework 1 Graded, grades available on-line through CMS, hard copy can be picked up in the homework return room in Gates 216, open Mon-Fri noon-4pm. There are still folks who turned in only a CMS copy of the homework – the CMS copy did not get graded (they should see a TA to turn in a hardcopy).
- Homework 2: Part of it involves downloading and running the Lucene IR system (but no programming). Note that "computer problems" will not excuse late submissions! There are computer labs available in Gates for both undergrads and masters students if you need a machine. Due Thursday 10/2 at beginning of class (hardcopy plus CMS).

Brief Look at Homework 1 Question

- A proposed project has the stated goal of improving the effectiveness of a retrieval system for general use to 90% recall and 90% precision.
 - (1) [5 points] What would be the F measure of such a system?
 - (2) [5 points] Do you think this goal can be achieved? Why or why not?
- Delicate real-life question: How do you prepare a grant proposal to a funding agency that wants that result?

Information Retrieval Users

- Users are central!
 - The goal of any IR search is to satisfy the information needs of the end user
- · But end users
 - Do not agree with each other as to what they want
 - Do not even agree with themselves (over a period of time)
- Precision and Recall are end user numbers
 - Dependent on a particular user notion of relevance
 - Are not purely objective measures

System Upper-bounds

- · Expected upper bound is about 75% precision at 75% recall - For general case, with random queries and users
- · Particular applications might be higher
 - Navigational queries: goal is to go to one particular page

Previous lectures

- Overview
- Evaluation 1
- Indexing
 - Text acquisition
 - Text transformation
 - Index construction
 - Dictionary
- Retrieval
 - Boolean model

Boolean retrieval

- Queries define a set of documents to be retrieved - Use Boolean operatives (AND, OR, AND NOT)
 - Use proximity, wild-cards, location info

User query:

Are there any cases which discuss negligent maintenance or failure to maintain aids to navigation such as lights, buoys, or channel mark-

Intermediary query: NEGLECT! FAIL! NEGLIG! /5 MAINT! REPAIR! /P NAVIGAT! /5 AID EQUIP! LIGHT BUOY "CHANNEL MARKER"

Boolean Retrieval

- Advantages
 - User has complete control over returned set
 - Supports a complex query language, many different features
 - Results are predictable, relatively easy to explain - Efficient processing since many documents can be eliminated from search
- Disadvantages
 - User has complete control over returned set (unranked set) · Effectiveness depends entirely on user
 - Supports a complex query language, many different features
 - Simple queries usually don't work well searching "by numbers"
 - Complex queries are difficult to form
 - Complex queries can be difficult to process efficiently

Today's Lecture (following Manning slides rather than Croft)

- Tf*idf Weighting
- · Vector Space Model

Ranked Retrieval Models

- · Rather than returning a set of documents, return an ordering of documents to the user - the top documents are ranked
- Rather than a complex query language, use natural language queries - Generally true, but can have ranking with Boolean type query languages, or can retrieve sets with natural language queries.

Ranked Retrieval Models

- Advantages
 - Result set size is not an issue
 - User will look at however many documents they want
 - Simple query language
- Disadvantages
 - User must trust that the ranking algorithm works (mostly)

Scoring as the basis of ranked retrieval

- We wish to return in order the documents most likely to be useful to the searcher
- How can we rank-order the documents in the collection with respect to a query?
- Assign a score say in [0, 1] to each document
- This score measures how well document and query "match".
 Equivalently, how similar the document and query are.

Query-document matching scores

- We need a way of assigning a score to a query/document pair
- · Let's start with a one-term query
- If the query term does not occur in the document: score should be 0
- The more frequent the query term in the document, the higher the score (should be)
- We will look at a number of alternatives for this.

Take 1: Jaccard coefficient

- Seen previously as a measure of overlap of two sets A and B
- jaccard(A,B) = |A ∩ B| / |A ∪ B|
- jaccard(A,A) = 1
- jaccard(A,B) = 0 if $A \cap B = 0$
- A and B don't have to be the same size.
- Always assigns a number between 0 and 1.
- So nice mathematical properties

Jaccard coefficient: Scoring example

- What is the query-document match score that the Jaccard coefficient computes for each of the two documents below?
- <u>Query</u>: ides of march
- Document 1: caesar died in march
- Document 2: the long march

Issues with Jaccard for scoring

- It doesn't consider term frequency (how many times a term occurs in a document)
- Rare terms in a collection are more informative than frequent terms. Jaccard doesn't consider this information
- · We need a more sophisticated way of normalizing for length

Binary term-document incidence matrix

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	1	1	0	0	0	1
Brutus	1	1	0	1	0	0
Caesar	1	1	0	1	1	1
Calpurnia	0	1	0	0	0	0
Cleopatra	1	0	0	0	0	0
mercy	1	0	1	1	1	1
worser	1	0	1	1	1	0

• Each document is represented by a binary vector

Term-document count matrices

Consider the number of occurrences of a term in a document:
 Each document is a count vector in N^v: a column below

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	157	73	0	0	0	0
Brutus	4	157	0	1	0	0
Caesar	232	227	0	2	1	1
Calpurni	a 0	10	0	0	0	0
Cleopatr	a 57	0	0	0	0	0
mercy	2	0	3	5	5	1
worser	2	0	1	1	1	0

Term frequency tf

- The term frequency tf_{t,d} of term t in document d is defined as the number of times that t occurs in d.
- We want to use tf when computing query-document match scores. But how?
- Raw term frequency is not what we want:
 - A document with 10 occurrences of the term is more relevant than a document with 1 occurrence of the term.
 - But not 10 times more relevant.
- Relevance does not increase proportionally with term frequency.

Log-frequency weighting

- The log frequency weight of term t in d is
 - $w_{t,d} = \begin{cases} 1 + \log_{10} tf_{t,d}, & \text{if } tf_{t,d} > 0\\ 0, & \text{otherwise} \end{cases}$
- $0 \rightarrow 0, 1 \rightarrow 1, 2 \rightarrow 1.3, 10 \rightarrow 2, 1000 \rightarrow 4$, etc.
- Score for a document-query pair: sum over terms t in both q and d:

• score =
$$\sum_{t \in q \cap d} (1 + \log tf_{t,d})$$

• The score is 0 if none of the query terms is present in the document.

Document frequency

- Rare terms are more informative than frequent terms
 Recall stop words
- Consider a term in the query that is rare in the collection (e.g., arachnocentric)
- A document containing this term is very likely to be relevant to the query *arachnocentric*
- → We want a high weight for rare terms like *arachnocentric*.

Document frequency, continued

- · Frequent terms are less informative than rare terms
- Consider a query term that is frequent in the collection (e.g., high, increase, line)
- A document containing such a term is more likely to be relevant than a document that doesn't
- But it's not a sure indicator of relevance.
- \rightarrow For frequent terms, we want high positive weights for words like high, increase, and line
- But lower weights than for rare terms.
- We will use document frequency (df) to capture this.

idf weight

- df_t is the document frequency of t: the number of documents that contain t
 - df_t is an inverse measure of the informativeness of t
 - df_t will tend to grow as N grows
- We define the idf (inverse document frequency) of t by $idf_t = log_{10} (N/df_t)$
 - We use $log (N/df_t)$ instead of N/df_t to "dampen" the effect of idf.

idf exampl	e, suppose N	= 1 million
term	df,	idf,
calpurnia	1	
animal	100	
sunday	1,000	
fly	10,000	
under	100,000	
the	1,000,000	
id	$\mathbf{f}_t = \log_{10} \left(\frac{N}{\mathrm{df}_t} \right)$)
 There is one is 	df value for each term	t in a collection

• The collection frequency of *t* is the number of occurrences of *t* in the collection, counting multiple occurrences.

Example			
	Word	Collection frequency	Document frequency
	insurance	10440	3997
	try	10422	8760

- Which word is a better search term (and should get a higher weight)?
- Lucene uses Collection Frequency (ease of indexing)

Effect of idf on ranking

- idf has no effect on ranking one term queries like "iPhone" – At least not directly.
- idf affects the ranking of documents for queries with at least two terms
 For the query capricious person, idf weighting makes occurrences of capricious count for much more in the final document ranking than occurrences of person.
- idf factors tell how important a term is in general (or in this collection)
 tf factors are an indication how important a term is within a document

Tf*idf weighting

 The tf*idf weight of a term is the product of its tf weight and its idf weight.

$$\mathbf{w}_{td} = \log(1 + \mathrm{tf}_{td}) \times \log_{10}(N/\mathrm{df}_{t})$$

- The standard (best known) weighting scheme in information retrieval – Alternative names: tf.idf, tf x idf, tf-idf
- Increases with the number of occurrences within a document
- Increases with the rarity of the term in the collection

- There are many variants
 - How "tf" is computed (with/without logs)
 - Whether the terms in the query are also weighted
 - ...

Binary \rightarrow count \rightarrow weight matrix

	Antony and Classatra	Indiana Canadar	The Temport	Hamlet	Othelle	Mashath
	Antony and Cleopatra	Julius Caesar	The Tempest	namiet	Othelio	Macbeth
Antony	5.25	3.18	0	0	0	0.35
Brutus	1.21	6.1	0	1	0	0
Caesar	8.59	2.54	0	1.51	0.25	0
Calpurnia	0	1.54	0	0	0	0
Cleopatra	2.85	0	0	0	0	0
mercy	1.51	0	1.9	0.12	5.25	0.88
worser	1.37	0	0.11	4.15	0.25	1.95

- Each document is now represented by a real-valued vector of tf*idf weights $\in R^{|\mathsf{V}|}$

Documents as vectors

- So we have a |V|-dimensional vector space
- Terms are axes of the space
- Documents are points or vectors in this space
- Very high-dimensional: tens of millions of dimensions when you apply this to a web search engine
- · These are very sparse vectors most entries are zero.

Queries as vectors

- <u>Key idea 1:</u> Do the same for queries: represent them as vectors in the space
- Key idea 2: Rank documents according to their proximity to the query in this space
- proximity = similarity of vectors
- proximity ≈ inverse of distance
- Recall: We do this because we want to get away from the you're-eitherin-or-out Boolean model.
- Instead: rank more relevant documents higher than less relevant documents

Formalizing vector space proximity

- · First cut: distance between two points
 - (= distance between the end points of the two vectors)
- Euclidean distance?
- Euclidean distance is a bad idea . . .
- ... because Euclidean distance is large for vectors of different lengths.

Why distance is a bad idea The Euclidean distance between qand d_2 is large even though the distribution of terms in the query q and the distribution of terms in the document d_2 are very similar.

Use angle instead of distance

- Thought experiment: take a document *d* and append it to itself. Call this document *d*'.
- · "Semantically" d and d' have the same content
- The Euclidean distance between the two documents can be quite large
 The angle between the two documents is 0, corresponding to maximal similarity.
- Key idea: Rank documents according to angle with query.

From angles to cosines

- · The following two notions are equivalent.
 - Rank documents in <u>decreasing</u> order of the angle between query and document
 - Rank documents in <u>increasing</u> order of cosine(query,document)
- Cosine is a monotonically decreasing function for the interval $\left[0^{\circ},\,180^{\circ}\right]$

cosine(query, document) $cos(\vec{q}, \vec{d}) = \frac{\vec{q} \cdot \vec{d}}{|\vec{q}||\vec{d}|} = \frac{\vec{q}}{|\vec{q}|} \cdot \frac{\vec{d}}{|\vec{d}|} = \frac{\sum_{i=1}^{|V|} q_i d_i}{\sqrt{\sum_{i=1}^{|V|} q_i^2} \sqrt{\sum_{i=1}^{|V|} d_i^2}}$ $\cdot q_i \text{ is the tf*lif weight of term$ *i* $in the query}$ $\cdot d_i \text{ is the tf*lif weight of term$ *i* $in the document}$ $\cdot cos(q, d) \text{ is the cosine similarity of q and d... or,}$ - equivalently, the cosine of the angle between q and d.

Length normalization

• A vector can be (length-) normalized by dividing each of its components by its length – for this we use the L₂ norm: $\|z\| = \sqrt{\sum x^2}$

$$\left\|\vec{x}\right\|_2 = \sqrt{\sum_i x_i^2}$$

- Dividing a vector by its L_2 norm makes it a unit (length) vector (on surface of unit hypersphere)
- Effect on the two documents d and d' (d appended to itself) from earlier slide: they have identical vectors after length-normalization.
 Long and short documents now have comparable weights

Cosine for length-normalized vectors

 For length-normalized vectors, cosine similarity is simply the dot product (or scalar product):

$$\cos(\vec{q},\vec{d}) = \vec{q} \bullet \vec{d} = \sum_{i=1}^{|V|} q_i d_i$$

for q, d length-normalized.

Cosine similarity amongst 3 documents

the novels	term	SaS	PaP	WН
as: Sense and	affection	115	58	20
Sensibility	jealous	10	7	11
aP: Pride and	gossip	2	0	6
Prejudice, and	wuthering	0	0	38
NH: Wuthering leights?	Term fre	quencies	(counts)	(no idf)

term SaS PaP WH term SaS PaP WH affection 3.06 2.76 2.30 affection 0.832 0.524 jeakous 2.00 1.85 2.04 jeakous 0.515 0.455 gossip 1.30 0 1.78 gossip 0.335 0 0.405 wuthering 0 2.58 wuthering 0 0 0.588 ccs(SaS,PaP) =
affection 3.06 2.76 2.30 affection 0.789 0.832 0.524 jealous 0.615 0.555 0.465 gossip 1.30 0 1.78 gossip 0.335 0 0.405 wuthering 0 0.588 ccs(SaS,PaP) =
jpabous 2.00 1.85 2.04 jpadous 0.555 0.465 gossip 1.30 0 1.78 gossip 0.335 0 0.405 wuthering 0 0 2.58 wuthering 0 0 0.588 cos(5a,S,Par) =
gossip 1.30 0 1.78 gossip 0.335 0 0.405 wuthering 0 0 2.58 wuthering 0 0 0.588 cos(SaS,PaP) =
wuthering 0 0 2.58 wuthering 0 0 0.588 cos(SaS,PaP) ≈
cos(SaS,PaP) ≈
0.789 × 0.822 + 0.515 × 0.555 + 0.335 × 0.0 + 0.0 × 0.0 eos(5a5,WH) ≈ 0.79 cos(5a5,WH) ≈ 0.69

Co	omputing cosine scores
Cos	INESCORE(q)
1	float Scores[N] = 0
2	float Length[N]
3	for each query term t
4	do calculate $w_{t,q}$ and fetch postings list for t
5	for each pair $(d, tf_{t,d})$ in postings list
6	do $Scores[d] + = w_{t,d} \times w_{t,q}$
7	Read the array Length
8	for each d
9	do $Scores[d] = Scores[d]/Length[d]$
10	return Top K components of Scores[]

Do Qu	cum lery:	ent: <i>best</i>	car ir car i	isura nsur	ance ance	auto ?	o insu	rance			
Term			Que	ry				Docu	ment		Pro d
	tf- raw	tf-wt	df	idf	wt	n'liz e	tf-raw	tf-wt	wt	n'liz e	
auto	0	0	5000	2.3	0	0	1	1	1	0.52	0
best	1	1	50000	1.3	1.3	0.34	0	0	0	0	0
car	1	1	10000	2.0	2.0	0.52	1	1	1	0.52	0.27
			4000	0.0	0.0	0.70	0	4.0	4.0	0.00	0.50

Table 4. Per	formance re	suits for eigh	la teras weight	ing methods :	veraged over	1 collections	
Term-weighting methods	Rank of method and ave. precision	CACM 3204 does 64 queries	CISI 1480 docs 112 queries	CRAN 1397 docs 225 gueries	INSPEC 12,684 does 84 garries	MED 1853 docs 30 quartes	Averages Sar 5 collections
L. Best fully weighted (all: edg)	Rank	0.1410	14	19	3	29 0.5428	11.2
 Weighted with inverse frequency f not used for does inver-aft) 	Rank	25 0.3252	14 0.2189	0.3950	40.2626	32 0.5542	16.4
 Classical tf × idf No normalization (afk: (fx) 	Rank P	29 0.3248	22 0.2166	219 0.2991	45 0.2345	132 0.5177	84.4
4. Best weighted prob- abilitie (nex-heat)	Rank	55	208	0.3899	97 0.2095	60 0.5449	86.2
5. Classical idf without normalization (Mr-Mr)	Rank	143 0.2535	247 0.1410	183 0.3384	160 0.1781	178 0.5062	182
 Binary independence probabilistic (hrz-hrz) 	Rank P	166 0.2376	263 0.1233	154 0.5386	0.1563	347 0.5116	129
 Standard weights cosine normalization (original Smart) (original Smart) 	Rank P	178 0.3102	173 0.1539	137 0.3408	187 0.3620	246 0.4541	184
 Coordination level binary vectors (here-here) 	Rank P	196 0.1848	284 0.1093	280 0.2434	258 0.0944	281 0.4132	290

Summary – vector space ranking

- Represent the query as a weighted tf*idf vector
- Represent each document as a weighted tf*idf vector
- · Compute the cosine similarity score for the query vector and each document vector
- Rank documents with respect to the query by score
- Return the top K (e.g., K = 10) to the user

Vector Space Model

- Advantages
 - Simple computation for ranking purposes
 Empirically works well with tf*idf weights

 - Intuitively appealing
 We'll see several examples later (feedback, clustering) - No model imposed notion of weights
 - Can be used with application dependent weights
- Disadvantages
 - No model imposed notion of weights
 Weighting crucial, but model gives no insights
 - Basic model assumes term independence