
9/25/2014

1

Information Retrieval
INFO/CS 4300

• Instructor: Chris Buckley

– Office hours Wednesdays 11am Gates 231

• Piazza will be the main communication tool

– https://piazza.com/cornell/fall2014/info4300/home

– Lecture notes will appear there.

– TA office hours and locations appear there.
• Office hours have changed (we now have 3 TAs instead of 4)

Course Admin

• Critique 1, Homework 1 – Graded, grades available on-line through
CMS, hard copy can be picked up in the homework return room in Gates
216, open Mon-Fri noon-4pm. There are still folks who turned in only a
CMS copy of the homework – the CMS copy did not get graded (they
should see a TA to turn in a hardcopy).

• Homework 2: Part of it involves downloading and running the Lucene IR
system (but no programming). Note that “computer problems” will not
excuse late submissions! There are computer labs available in Gates for
both undergrads and masters students if you need a machine. Due
Thursday 10/2 at beginning of class (hardcopy plus CMS).

Brief Look at Homework 1 Question

• A proposed project has the stated goal of improving the effectiveness of
a retrieval system for general use to 90% recall and 90% precision.

– (1) [5 points] What would be the F measure of such a system?

– (2) [5 points] Do you think this goal can be achieved? Why or why
not?

• Delicate real-life question: How do you prepare a grant proposal to a
funding agency that wants that result?

Information Retrieval Users

• Users are central!

– The goal of any IR search is to satisfy the information needs of the
end user

• But end users

– Do not agree with each other as to what they want

– Do not even agree with themselves (over a period of time)

• Precision and Recall are end user numbers

– Dependent on a particular user notion of relevance

– Are not purely objective measures

Judgment Agreement (Average)

𝐴 ∩ 𝐵

Arel
30%

Brel
30%

40%

Judged Docs (~1500)

Suppose a system had perfect performance according to user B
(retrieves exactly the documents B thought relevant)

What is the recall and precision according to user A?

Judgment Agreement (Normal single topic)

Arel Brel

Judged Docs (~1500)

Suppose a system had perfect performance according to user B
What is the recall and precision according to user A?

𝐴𝑟𝑒𝑙 ∩ 𝐵𝑟𝑒𝑙

(𝐴𝑟𝑒𝑙 ∪ 𝐵𝑟𝑒𝑙)
= 40%

https://piazza.com/class/hz0gtmi8y6v6eo?cid=4

9/25/2014

2

System Upper-bounds

• Expected upper bound is about 75% precision at 75% recall

– For general case, with random queries and users

• Particular applications might be higher

– Navigational queries: goal is to go to one particular page

Previous lectures

• Overview

• Evaluation 1

• Indexing

– Text acquisition

– Text transformation

– Index construction
• Dictionary

• Retrieval

– Boolean model

Boolean retrieval

• Queries define a set of documents to be retrieved

– Use Boolean operatives (AND, OR, AND NOT)

– Use proximity, wild-cards, location info

Boolean Retrieval

• Advantages
– User has complete control over returned set
– Supports a complex query language, many different features
– Results are predictable, relatively easy to explain
– Efficient processing since many documents can be eliminated from search

• Disadvantages
– User has complete control over returned set (unranked set)

• Effectiveness depends entirely on user

– Supports a complex query language, many different features
– Simple queries usually don’t work well – searching “by numbers”
– Complex queries are difficult to form
– Complex queries can be difficult to process efficiently

Today’s Lecture (following Manning slides rather than Croft)

• Tf*idf Weighting

• Vector Space Model

Ranked Retrieval Models

• Rather than returning a set of documents, return an ordering of
documents to the user – the top documents are ranked

• Rather than a complex query language, use natural language queries

– Generally true, but can have ranking with Boolean type query
languages, or can retrieve sets with natural language queries.

9/25/2014

3

Ranked Retrieval Models

• Advantages

– Result set size is not an issue

• User will look at however many documents they want

– Simple query language

• Disadvantages

– User must trust that the ranking algorithm works (mostly)

Scoring as the basis of ranked retrieval

• We wish to return in order the documents most likely to be useful to the
searcher

• How can we rank-order the documents in the collection with respect to
a query?

• Assign a score – say in [0, 1] – to each document

• This score measures how well document and query “match”.

– Equivalently, how similar the document and query are.

Query-document matching scores

• We need a way of assigning a score to a query/document pair

• Let’s start with a one-term query

• If the query term does not occur in the document: score should be 0

• The more frequent the query term in the document, the higher the
score (should be)

• We will look at a number of alternatives for this.

Take 1: Jaccard coefficient

• Seen previously as a measure of overlap of two sets A and B

• jaccard(A,B) = |A ∩ B| / |A ∪ B|

• jaccard(A,A) = 1

• jaccard(A,B) = 0 if A ∩ B = 0

• A and B don’t have to be the same size.

• Always assigns a number between 0 and 1.

• So nice mathematical properties

Jaccard coefficient: Scoring example

• What is the query-document match score that the Jaccard coefficient
computes for each of the two documents below?

• Query: ides of march

• Document 1: caesar died in march

• Document 2: the long march

Issues with Jaccard for scoring

• It doesn’t consider term frequency (how many times a term occurs in a
document)

• Rare terms in a collection are more informative than frequent terms.
Jaccard doesn’t consider this information

• We need a more sophisticated way of normalizing for length

9/25/2014

4

Binary term-document incidence matrix

• Each document is represented by a binary vector

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1

Brutus 1 1 0 1 0 0

Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0

Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

Term-document count matrices

• Consider the number of occurrences of a term in a document:

– Each document is a count vector in ℕv: a column below

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0

Brutus 4 157 0 1 0 0

Caesar 232 227 0 2 1 1

Calpurnia 0 10 0 0 0 0

Cleopatra 57 0 0 0 0 0

mercy 2 0 3 5 5 1

worser 2 0 1 1 1 0

Term frequency tf

• The term frequency tft,d of term t in document d is defined as the
number of times that t occurs in d.

• We want to use tf when computing query-document match scores. But
how?

• Raw term frequency is not what we want:

– A document with 10 occurrences of the term is more relevant than a
document with 1 occurrence of the term.

– But not 10 times more relevant.

• Relevance does not increase proportionally with term frequency.

Log-frequency weighting

• The log frequency weight of term t in d is

• 0 → 0, 1 → 1, 2 → 1.3, 10 → 2, 1000 → 4, etc.

• Score for a document-query pair: sum over terms t in both q and d:

• score

• The score is 0 if none of the query terms is present in the document.

otherwise 0,

0 tfif, tflog 1

10 t,dt,d

t,dw

dqt dt) tflog (1 ,

Document frequency

• Rare terms are more informative than frequent terms

– Recall stop words

• Consider a term in the query that is rare in the collection (e.g.,
arachnocentric)

• A document containing this term is very likely to be relevant to the
query arachnocentric

• → We want a high weight for rare terms like arachnocentric.

Document frequency, continued

• Frequent terms are less informative than rare terms

• Consider a query term that is frequent in the collection (e.g., high,
increase, line)

• A document containing such a term is more likely to be relevant than a
document that doesn’t

• But it’s not a sure indicator of relevance.

• → For frequent terms, we want high positive weights for words like
high, increase, and line

• But lower weights than for rare terms.

• We will use document frequency (df) to capture this.

9/25/2014

5

idf weight

• dft is the document frequency of t: the number of documents that
contain t

– dft is an inverse measure of the informativeness of t

– dft will tend to grow as N grows

• We define the idf (inverse document frequency) of t by

– We use log (N/dft) instead of N/dft to “dampen” the effect of idf.

)/df(log idf 10 tt N

idf example, suppose N = 1 million

• There is one idf value for each term t in a collection

term dft idft

calpurnia 1

animal 100

sunday 1,000

fly 10,000

under 100,000

the 1,000,000

)/df(log idf 10 tt N

Collection vs. Document frequency

• The collection frequency of t is the number of occurrences of t in the
collection, counting multiple occurrences.

• Example:

• Which word is a better search term (and should get a higher weight)?

• Lucene uses Collection Frequency (ease of indexing)

Word Collection frequency Document frequency

insurance 10440 3997

try 10422 8760

Effect of idf on ranking

• idf has no effect on ranking one term queries like “iPhone”

– At least not directly.

• idf affects the ranking of documents for queries with at least two terms

– For the query capricious person, idf weighting makes occurrences of
capricious count for much more in the final document ranking than
occurrences of person.

• idf factors tell how important a term is in general (or in this collection)

– tf factors are an indication how important a term is within a
document

Tf*idf weighting

• The tf*idf weight of a term is the product of its tf weight and its idf
weight.

• The standard (best known) weighting scheme in information retrieval

– Alternative names: tf.idf, tf x idf, tf-idf

• Increases with the number of occurrences within a document

• Increases with the rarity of the term in the collection

)df/(log)tf1log(w 10,, tdt N
dt

Score for a document given a query

• There are many variants

– How “tf” is computed (with/without logs)

– Whether the terms in the query are also weighted

– …

Score(q,d) tf.idft,d
tqd

9/25/2014

6

Binary → count → weight matrix

• Each document is now represented by a real-valued vector of tf*idf
weights ∈ R|V|

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 5.25 3.18 0 0 0 0.35

Brutus 1.21 6.1 0 1 0 0

Caesar 8.59 2.54 0 1.51 0.25 0

Calpurnia 0 1.54 0 0 0 0

Cleopatra 2.85 0 0 0 0 0

mercy 1.51 0 1.9 0.12 5.25 0.88

worser 1.37 0 0.11 4.15 0.25 1.95

Documents as vectors

• So we have a |V|-dimensional vector space

• Terms are axes of the space

• Documents are points or vectors in this space

• Very high-dimensional: tens of millions of dimensions when you apply
this to a web search engine

• These are very sparse vectors - most entries are zero.

Queries as vectors

• Key idea 1: Do the same for queries: represent them as vectors in the
space

• Key idea 2: Rank documents according to their proximity to the query in
this space

• proximity = similarity of vectors

• proximity ≈ inverse of distance

• Recall: We do this because we want to get away from the you’re-either-
in-or-out Boolean model.

• Instead: rank more relevant documents higher than less relevant
documents

Formalizing vector space proximity

• First cut: distance between two points

– (= distance between the end points of the two vectors)

• Euclidean distance?

• Euclidean distance is a bad idea . . .

• . . . because Euclidean distance is large for vectors of different lengths.

Why distance is a bad idea

The Euclidean
distance between q
and d2 is large even

though the
distribution of terms

in the query q and the
distribution of
terms in the

document d2 are
very similar.

Use angle instead of distance

• Thought experiment: take a document d and append it to itself. Call this
document d′.

• “Semantically” d and d′ have the same content

• The Euclidean distance between the two documents can be quite large

• The angle between the two documents is 0, corresponding to maximal
similarity.

• Key idea: Rank documents according to angle with query.

9/25/2014

7

From angles to cosines

• The following two notions are equivalent.

– Rank documents in decreasing order of the angle between query and
document

– Rank documents in increasing order of cosine(query,document)

• Cosine is a monotonically decreasing function for the interval [0o, 180o]

cosine(query,document)

• qi is the tf*idf weight of term i in the query
• di is the tf*idf weight of term i in the document

• cos(q,d) is the cosine similarity of q and d … or,
– equivalently, the cosine of the angle between q and d.

V

i i

V

i i

V

i ii

dq

dq

d

d

q

q

dq

dq
dq

1

2

1

2

1),cos(

Dot product

Length normalization

• A vector can be (length-) normalized by dividing each of its components
by its length – for this we use the L2 norm:

• Dividing a vector by its L2 norm makes it a unit (length) vector (on
surface of unit hypersphere)

• Effect on the two documents d and d′ (d appended to itself) from earlier
slide: they have identical vectors after length-normalization.

– Long and short documents now have comparable weights

i ixx 2

2

Cosine for length-normalized vectors

• For length-normalized vectors, cosine similarity is simply the dot
product (or scalar product):

for q, d length-normalized.

cos(q ,d) q d qidi
i1

V

Cosine similarity illustrated Cosine similarity amongst 3 documents

term SaS PaP WH

affection 115 58 20

jealous 10 7 11

gossip 2 0 6

wuthering 0 0 38

How similar are

the novels

SaS: Sense and

Sensibility

PaP: Pride and

Prejudice, and

WH: Wuthering

Heights?
Term frequencies (counts) (no idf)

9/25/2014

8

3 documents example

Log frequency weighting

term SaS PaP WH

affection 3.06 2.76 2.30

jealous 2.00 1.85 2.04

gossip 1.30 0 1.78

wuthering 0 0 2.58

After length normalization

term SaS PaP WH

affection 0.789 0.832 0.524

jealous 0.515 0.555 0.465

gossip 0.335 0 0.405

wuthering 0 0 0.588

cos(SaS,PaP) ≈
0.789 × 0.832 + 0.515 × 0.555 + 0.335 × 0.0 + 0.0 × 0.0
≈ 0.94
cos(SaS,WH) ≈ 0.79
cos(PaP,WH) ≈ 0.69

Why do we have cos(SaS,PaP) > cos(SaS,WH)?

Computing cosine scores

Tf*idf weighting has many variants

• Columns headed ‘n’ are acronyms for weight schemes.

Weighting may differ in queries vs documents

• Many search engines allow for different weightings for queries vs. documents

• SMART Notation: denotes the combination in use in an engine, with the
notation ddd.qqq, using the acronyms from the previous table

• A very standard weighting scheme is: lnc.ltc

• Document: logarithmic tf (l as first character), no idf and cosine normalization

– idf in documents presents problems in dynamic collections

• Query: logarithmic tf (l in leftmost column), idf (t in second column), cosine
normalization …

Tf*idf example: lnc.ltc

Document: car insurance auto insurance

Query: best car insurance

Term Query Document Pro
d

tf-
raw

tf-wt df idf wt n’liz
e

tf-raw tf-wt wt n’liz
e

auto 0 0 5000 2.3 0 0 1 1 1 0.52 0

best 1 1 50000 1.3 1.3 0.34 0 0 0 0 0

car 1 1 10000 2.0 2.0 0.52 1 1 1 0.52 0.27

insurance 1 1 1000 3.0 3.0 0.78 2 1.3 1.3 0.68 0.53

Score = 0+0+0.27+0.53 = 0.8

Doc length =

12 02 12 1.32 1.92

Tf*idf performance across collections

• Performance differs across collections IPM 1988 Salton and Buckley

9/25/2014

9

Summary – vector space ranking

• Represent the query as a weighted tf*idf vector

• Represent each document as a weighted tf*idf vector

• Compute the cosine similarity score for the query vector and each
document vector

• Rank documents with respect to the query by score

• Return the top K (e.g., K = 10) to the user

Vector Space Model

• Advantages
– Simple computation for ranking purposes
– Empirically works well with tf*idf weights
– Intuitively appealing

• We’ll see several examples later (feedback, clustering)

– No model imposed notion of weights
• Can be used with application dependent weights

• Disadvantages
– No model imposed notion of weights

• Weighting crucial, but model gives no insights

– Basic model assumes term independence

