
10/7/2014

1

Information Retrieval
INFO/CS 4300

• Instructor: Chris Buckley

– Office hours Wednesdays 11am Gates 231

• Piazza will be the main communication tool

– https://piazza.com/cornell/fall2014/info4300/home

– Lecture notes will appear there.

– TA office hours and locations appear there.

Course Admin

• Critique 1, Homework 1 – Graded, grades available on-line through
CMS, hard copy can be picked up in the homework return room in Gates
216, open Mon-Fri noon-4pm

• Project 1 – Out today via CMS, due October 30. Please form groups
within CMS of 2-3 students per group.

Previous Lectures

• Overview
• Evaluation 1
• Indexing
• Retrieval

– Boolean Model
– Tf*idf weighting
– Vector Space Model
– Retrieval Optimization (DAAT, TAAT, safe vs non-safe)
– Basic Probabilistic Model
– Advanced Probabilistic Models

• BM25
• Query Likelihood Language Model

Retrieval Models

• Older models
– Boolean retrieval (still used, special applications)
– Vector Space model (still used with tf*idf weighting for general retrieval)
– Basic Probabilistic model

• Newer Probabilistic Models
– BM25
– Language models (Query Likelihood now, more later)

• Newer tf*idf variants
– Pivoted unique normalization

• Combining evidence (later in course)
– Inference networks
– Learning to Rank

Improved vector space retrieval

• Standard weighting scheme is tf*idf and cosine similarity

– We’ve discussed tf*idf variants (and you’ll see more of this next week
with project 1) and possible alternatives

– Can cosine document length normalization be improved?

• Recall that cosine normalization put all vectors on a unit hypersphere

• Nice theoretically – is it what we want in practice?

• The answer turns out to be no, but this was discovered in a very roundabout
fashion

Case study: Query expansion digression

• I was looking at query expansion techniques in the mid 1990’s (early
TREC days where the field was doing experimenting with long
documents in test collections for the first time)

• Basic tf*idf weights with cosine normalization

• Discovered a method of expanding (lengthening) queries by adding
related terms with appropriate weights

– Worked very well improving retrieval results, in fact too well!!!

– Was still getting improvements (small, but significant) by adding 200-
300 terms.

https://piazza.com/class/hz0gtmi8y6v6eo?cid=4

10/7/2014

2

Query expansion => length normalization

• Query expansion results yielded very smooth improvement curves as terms were
added. At the end of even 100 added terms, the terms being added were common
terms that looked visually to be pretty random. Either

– A. I had discovered something fundamental like an “atomic” unit or
measurement of semantic information content, and how to weight it. Or

– B. Something else was going on

• I alternated between the two possibilities for a couple of weeks

• The answer turned out to be B.

– Adding random common terms (with low weights) to the query increases the
score of documents randomly (wrt original query), but will tend to increase the
score of longer documents more than shorter documents!

– Cosine length normalization turned out to be biased against long documents

Investigating length normalization

• We had had length normalization on our list of factors to investigate for
a while. Steve Robertson and Okapi had just come out with BM25
which approached length normalization differently.

• How do you investigate length normalization issues?

• First step, figure out what is happening in practice now

• We divided the document collection into bins according to length

• Calculated Prob (retrieval of D | D in bin i)

• Calculated Prob (relevance of D | D in bin i)

Prob (cosine retrieval) vs Prob (relevance)

Prob(doc in bin is
retrieved (cosine))

Prob(doc in bin is
relevant)

Singhal, Buckley, Mitra, (Salton) (1995)

Cosine favors shorter documents

• In an ideal world, we would hope the two plots would be much closer.

• If we change our retrieval normalization to match Prob(Relevance), will
that improve performance?

• Amit Singhal took over finding methods to do this.

• First step was introducing pivoted normalization.

Pivot old normalization around a point

Pivoted_normalization = (1.0 – slope) * pivot + slope * old_normalization

Pivoted Normalization

• Pivoted_normalization = (1.0 – slope) * pivot + slope * old_normalization

• If we take the pivot point as being the average old normalization document,
and divide by it (doesn’t affect ranking)

• Pivoted_normalization = (1.0 – slope) + slope *
𝑜𝑙𝑑 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑙𝑑 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

• A document of length average old normalization will be unchanged

• Slope can be interpreted as our “belief in length”

• Derived very differently, but similar to Okapi’s BM25 length normalization
factor (done first)

10/7/2014

3

Pivoted cosine normalization

Plot on left matches relevance much better than old plot on right
MAP performance improves by 11.7%

Pivoted unique terms

• Still a problem with very long documents.

• Analyzing further, issue is the tf contribution in very long documents

– Even standard taking logs is too much (for the length part)

• Instead of cosine of log (1.0+tf) weighting or something similar, use the
number of unique terms.

• Pivoted_unique = (1-slope) * pivot + slope * # of unique terms

• Again can take the pivot as the average number of unique terms in a doc

Pivoted unique vs pivoted cosine

Matches relevance better in the longer documents
MAP performance is another 6% better – total improvement of 18.3% over cosine

Pivoted unique: Final tf*idf weighting

• Lnu.ltc where Lnu weighting in documents is

1+log 𝑡𝑓

1+log(𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑓)

(1.0 – slope) + slope *
𝑜𝑓 𝑢𝑛𝑖𝑞𝑢𝑒 𝑡𝑒𝑟𝑚𝑠

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 # 𝑜𝑓 𝑢𝑛𝑖𝑞𝑢𝑒 𝑡𝑒𝑟𝑚𝑠

Where slope = 0.20 works well across collections

Retrieval Models

• Older models
– Boolean retrieval (still used, special applications)
– Vector Space model (still used with tf*idf weighting for general retrieval)
– Basic Probabilistic model

• Newer Probabilistic Models
– BM25
– Language models

• Newer tf*idf variants
– Pivoted unique normalization

• Combining evidence (later in course)
– Inference networks
– Learning to Rank

Features of these newer models

• All work about the same as far as test collection evaluation goes

• All require estimating parameter(s)

– The estimations are not completely motivated by the models

– But most parameters are insensitive to small changes (should do
reasonably on other collections)

• Precursors, in some ways, to “Learning to Rank” models, covered later

10/7/2014

4

Open source IR systems

• Widely used academic systems

– Terrier (Java, U. Glasgow) http://terrier.org

– Indri/Galago/Lemur (C++ (& Java), U. Mass & CMU)

– Tail of others (Zettair, …)

– SMART no longer used (got tied up due to a bad licensing agreement)

• Widely used non-academic open source systems

– Lucene
• Things built on it: Solr, ElasticSearch

– A few others (Xapian, …)

Lucene (adapted from tutorial at Stanford)

• Open source Java library for indexing and searching

– Lets you add search to your application

– Not a complete search system by itself

– Written by Doug Cutting

– Used by: Twitter, LinkedIn; Reddit, Zappos; CiteSeer, Eclipse, …

– … and many more (see http://wiki.apache.org/lucene-
java/PoweredBy)

• Ports/integrations to other languages

– C/C++, C#, Ruby, Perl, Python, PHP, …

Lucene

• Quite flexible in certain ways

– Witnessed by variety of folks using it

– Many indexing and similarity options

• Easy flexibility limited by information available

– A feature shared by all operational systems

– Examples

• Use of CollectionFrequency rather than DocumentFrequency (idf)

• Document Normalization techniques limited (cosine, idf cause issues)
– Less directly usable for Project 1 than hoped for!

Lucene in a search system

Raw
Content

Acquire content

Build document

Analyze
document

Index document

Index

Users

Search UI

Build
query

Render
results

Run query

Lucene demos

• Command line Indexer

– org.apache.lucene.demo.IndexFiles

• Command line Searcher

– org.apache.lucene.demo.SearchFiles

Core indexing classes

• IndexWriter

– Central component that allows you to create a new index, open an existing
one, and add, remove, or update documents in an index

– Built on an IndexWriterConfig and a Directory

• Directory

– Abstract class that represents the location of an index

• Analyzer

– Extracts tokens from a text stream

http://terrier.org
http://wiki.apache.org/lucene-java/PoweredBy

10/7/2014

5

Creating an IndexWriter

import org.apache.lucene.index.IndexWriter;

import org.apache.lucene.store.Directory;

import org.apache.lucene.analysis.standard.StandardAnalyzer;

...

IndexWriter getIndexWriter(String dir) {

Directory indexDir = FSDirectory.open(new File(dir));

IndexWriterConfig luceneConfig = new IndexWriterConfig(

luceneVersion, new StandardAnalyzer(luceneVersion));

return(new IndexWriter(indexDir, luceneConfig));

}

Core indexing classes (contd.)

• Document

– Represents a collection of named Fields. Text in these Fields are
indexed.

• Field

– Note: Lucene Fields can represent both “fields” and “zones”

– Or even other things like numbers.

A Document contains Fields

import org.apache.lucene.document.Document;

import org.apache.lucene.document.Field;

...

protected Document getDocument(File f) throws Exception {

Document doc = new Document();

doc.add(new TextField("contents”, new FileReader(f)))

doc.add(new StringField("filename”, f.getName()));

doc.add(new StringField("fullpath”,

f.getCanonicalPath()));

return doc;

}

CACM Fields (Document 3139)

New Methods to Color the Vertices of a Graph

This paper describes efficient new heuristic

methods to color the vertices of a graph which rely

upon the comparison of the degrees and structure of a graph. A method

is developed which is exact for bipartite graphs and is an

important part of heuristic procedures to find maximal cliques in general

graphs. Finally an exact method is given which performs better

than the Randall-Brown algorithm and is able to color larger

graphs, and the new heuristic methods, the classical methods, and

the exact method are compared.

CACM April, 1979

Brelaz, D.

NP-complete, graph structure, balancing, graph

coloring, scheduling, comparison of the methods

5.25 5.32

CA790405 DH June 5, 1979 2:05 PM

• Fields in original CACM collection were tagged to distinguish them

Index a Documentwith IndexWriter

private IndexWriter writer;

...

private void indexFile(File f) throws

Exception {

Document doc = getDocument(f);

writer.addDocument(doc);

}

Indexing a directory

private IndexWriter writer;

...

public int index(String dataDir,

FileFilter filter)

throws Exception {

File[] files = new File(dataDir).listFiles();

for (File f: files) {

if (... &&

(filter == null ||

filter.accept(f))) {

indexFile(f);

}

}

return writer.numDocs();

}

10/7/2014

6

Closing the IndexWriter

private IndexWriter writer;

...

public void close() throws IOException {

writer.close();

}

The Index

• The Index is the kind of inverted index we know and love

• The default Lucene40 codec is:

– variable-byte coding of delta values

– multi-level skip lists

– natural ordering of docIDs

– interleaved docIDs and position data

– Very short postings lists are inlined into the term dictionary

• Other codecs are available: PFOR-delta, Simple9, …

Core searching classes

• IndexSearcher

– Central class that exposes several search methods on
an index

– Accessed via an IndexReader

• Query

– Abstract query class. Concrete subclasses represent
specific types of queries, e.g., matching terms in
fields, boolean queries, phrase queries, …

• QueryParser

– Parses a textual representation of a query into a
Query instance

IndexSearcher

IndexSearcher

IndexReader

Directory

Query TopDocs

Creating an IndexSearcher

import org.apache.lucene.search.IndexSearcher;

...

public static void search(String indexDir,

String q)

throws IOException, ParseException {

IndexReader rdr =

DirectoryReader.open(

FSDirectory.open(new File(indexDir)));

IndexSearcher is = new IndexSearcher(rdr);

...

}

Query and QueryParser
import org.apache.lucene.search.Query;

import org.apache.lucene.queryParser.QueryParser;

...

public static void search(String indexDir, String q)

throws IOException, ParseException

...

QueryParser parser =

new QueryParser(Version.LUCENE_40,

"contents”,

new StandardAnalyzer(

Version.LUCENE_40));

Query query = parser.parse(q);

...

}

10/7/2014

7

Core searching classes (contd.)

• TopDocs

– Contains references to the top documents returned
by a search

• ScoreDoc

– Represents a single search result

search() returns TopDocs
import org.apache.lucene.search.TopDocs;

...

public static void search(String indexDir,String q)

throws IOException, ParseException

...

IndexSearcher is = ...;

...

Query query = ...;

...

TopDocs hits = is.search(query, 10);

}

TopDocs contain ScoreDocs

import org.apache.lucene.search.ScoreDoc;

...

public static void search(String indexDir, String q)

throws IOException, ParseException

...

IndexSearcher is = ...;

...

TopDocs hits = ...;

...

for(ScoreDoc scoreDoc : hits.scoreDocs) {

Document doc = is.doc(scoreDoc.doc);

System.out.println(doc.get("fullpath"));

}

}

Closing IndexSearcher

public static void search(String indexDir,

String q)

throws IOException, ParseException

...

IndexSearcher is = ...;

...

is.close();

}

How Lucene models content

• A Document is the atomic unit of indexing and
searching

– A Document contains Fields

• Fields have a name and a value

– You have to translate raw content into Fields

– Examples: Title, author, date, abstract, body, URL,
keywords, ...

– Different documents can have different fields

– Search a field using name:term, e.g., title:lucene

Fields

• Fields may

– Be indexed or not

• Indexed fields may or may not be analyzed (i.e.,
tokenized with an Analyzer)
– Non-analyzed fields view the entire value as a single token

(useful for URLs, paths, dates, social security numbers, ...)

– Be stored or not

• Useful for fields that you’d like to display to users

– Optionally store term vectors

• Like a positional index on the Field’s terms

• Useful for highlighting, finding similar documents,
categorization

10/7/2014

8

Analyzer

• Tokenizes the input text

• Common Analyzers

– WhitespaceAnalyzer
Splits tokens on whitespace

– SimpleAnalyzer
Splits tokens on non-letters, and then lowercases

– StopAnalyzer
Same as SimpleAnalyzer, but also removes stop words

– StandardAnalyzer
Most sophisticated analyzer that knows about certain token types,
lowercases, removes stop words, ...

Analysis example

• “The quick brown fox jumped over the lazy dog”

• WhitespaceAnalyzer

– [The] [quick] [brown] [fox] [jumped] [over] [the] [lazy] [dog]

• SimpleAnalyzer

– [the] [quick] [brown] [fox] [jumped] [over] [the] [lazy] [dog]

• StopAnalyzer

– [quick] [brown] [fox] [jumped] [over] [lazy] [dog]

• StandardAnalyzer

– [quick] [brown] [fox] [jumped] [over] [lazy] [dog]

Another analysis example

• “XY&Z Corporation – xyz@example.com”

• WhitespaceAnalyzer

– [XY&Z] [Corporation] [-] [xyz@example.com]

• SimpleAnalyzer

– [xy] [z] [corporation] [xyz] [example] [com]

• StopAnalyzer

– [xy] [z] [corporation] [xyz] [example] [com]

• StandardAnalyzer

– [xy&z] [corporation] [xyz@example.com]

What’s inside an Analyzer?

• Analyzers need to return a TokenStream
public TokenStream tokenStream(String fieldName,

Reader reader)

TokenStream

Tokenizer TokenFilter

Reader Tokenizer TokenFilter TokenFilter

Tokenizers and TokenFilters

• Tokenizer

– WhitespaceTokeniz
er

– KeywordTokenizer

– LetterTokenizer

– StandardTokenizer

– ...

 TokenFilter

 LowerCaseFilter

 StopFilter

 PorterStemFilter

 ASCIIFoldingFilter

 StandardFilter

 ...

Tokenizer setup example (see MyAnalyzer.java)

final StandardTokenizer src = new StandardTokenizer(reader);

TokenStream tok = new StandardFilter(src);

tok = new LowerCaseFilter(tok);

// Add additional filters here

//tok= new PorterStemFilter(tok);

//tok = new StopFilter(tok, indri_stopwords);

10/7/2014

9

Index format

• Each Lucene index consists of one or more segments

– A segment is a standalone index for a subset of documents

– All segments are searched

– A segment is created whenever IndexWriter flushes adds/deletes

• Periodically, IndexWriter will merge a set of segments into a single
segment

– Policy specified by a MergePolicy

• You can explicitly invoke optimize() to merge segments

Basic merge policy

• Segments are grouped into levels

• Segments within a group are roughly equal size (in log space)

• Once a level has enough segments, they are merged into a segment at
the next level up

– E.g. Logarithmic Merge from our earlier class

Searching a changing index

Directory dir = FSDirectory.open(...);

IndexReader reader = IndexReader.open(dir);

IndexSearcher searcher = new IndexSearcher(reader);

Above reader does not reflect changes to the index unless you reopen it.

Reopening is more resource efficient than opening a new IndexReader.

IndexReader newReader = reader.reopen();

If (reader != newReader) {

reader.close();

reader = newReader;

searcher = new IndexSearcher(reader);

}

Near-real-time search

IndexWriter writer = ...;

IndexReader reader = writer.getReader();

IndexSearcher searcher = new IndexSearcher(reader);

// Now let us say there’s a change to the index using writer

writer.addDocument(newDoc);

// reopen() and getReader() force writer to flush

IndexReader newReader = reader.reopen();

if (reader != newReader) {

reader.close();

reader = newReader;

searcher = new IndexSearcher(reader);

}

IndexSearcher

• Methods

– TopDocs search(Query q, int n);

– Document doc(int docID);

QueryParser

• Constructor

– QueryParser(Version matchVersion,
String defaultField,

Analyzer analyzer);

– Important: Need to ensure that Analyzers used at indexing time are
consistent with Analyzers used at searching time

• Parsing methods

– Query parse(String query) throws
ParseException;

– ... and many more

10/7/2014

10

QueryParser syntax examples

Query expression Document matches if…

java Contains the term java in the default field

java junit
java OR junit

Contains the term java or junit or both in the default
field (the default operator can be changed to AND)

+java +junit
java AND junit

Contains both java and junit in the default field

title:ant Contains the term ant in the title field

title:extreme –subject:sports Contains extreme in the title and not sports in subject

(agile OR extreme) AND java Boolean expression matches

title:”junit in action” Phrase matches in title

title:”junit action”~5 Proximity matches (within 5) in title

java* Wildcard matches

java~ Fuzzy matches

lastmodified:[1/1/09 TO
12/31/09]

Range matches

TopDocs and ScoreDoc

• TopDocs methods
– Number of documents that matched the search
totalHits

– Array of ScoreDoc instances containing results
scoreDocs

– Returns best score of all matches
getMaxScore()

• ScoreDoc methods
– Document id
doc

– Document score
score

Scoring

• Original scoring function uses basic tf-idf scoring with

– Programmable boost values for certain fields in documents

– Length normalization

– Boosts for documents containing more of the query terms

• IndexSearcher provides an explain() method that explains the
scoring of a document

– Sample debugging output
if (queryId == 32) {

System.out.print(searcher.explain(query, results.scoreDocs[0].doc));
}

Lucene 4.0 Scoring

• As well as traditional tf.idf vector space model, Lucene 4.0+ adds:

– BM25

– drf (divergence from randomness)

– ib (information (theory)-based similarity)

indexSearcher.setSimilarity(

new BM25Similarity());

BM25Similarity custom =

new BM25Similarity(1.2, 0.75); // k1, b

indexSearcher.setSimilarity(custom);

Default Lucene Similarity

• 𝑠𝑐𝑜𝑟𝑒 𝑞, 𝑑 = 𝑐𝑜𝑜𝑟𝑑 𝑞, 𝑑 ∗ 𝑞𝑢𝑒𝑟𝑦𝑁𝑜𝑟𝑚 𝑞 ∗

𝑡 𝑖𝑛 𝑞

(𝑡𝑓 𝑡 𝑖𝑛 𝑑 ∗ 𝑖𝑑𝑓 𝑡 2 ∗ 𝑡. 𝑔𝑒𝑡𝑏𝑜𝑜𝑠𝑡 ∗ 𝑛𝑜𝑟𝑚(𝑡, 𝑑)

• Where

– Coord(q,d) is fraction of query terms in q that d contains

– queryNorm (q) is our familiar cosine length normalization

– t.getboost() could be a user supplied weight in advanced queries

– Norm(t,d) is set at indexing time and considers field boosts and lengths

