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Adaptive Retransmission: 
Jacobson/Karels Algorithm  
q New calculation for average RTT 

❍ Difference = SampleRTT - EstimatedRTT      
❍ EstimatedRTT = EstimatedRTT + (α x Difference)       
❍ Deviation = Deviation + β (|Difference| - Deviation)  

•  where β is recommended to be 0.25       

q Consider variance when setting timeout value     
❍ TimeOut = EstimatedRTT + φ x Deviation       

•  where φ = 4 
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Jacobson/Karels Algorithm 

q Fast computation using integer arithmetic     
❍  scale by α and β, i.e. multiply by 8 (>>3) and 4 (>>2)       
❍  keep SampleRTT and TimeOut unscaled     
❍ Difference = SampleRTT – EstimatedRTT ’  >>3      
❍ EstimatedRTT' = EstimatedRTT' + Difference     
❍  If (Difference < 0) Difference = - Difference       
❍ Deviation' = Deviation' + (Difference  - Deviation'>>2)        
❍ TimeOut = EstimatedRTT ’  >>3 + Deviation’  
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TCP Congestion Control 
Additive Increase/Multiplicative Decrease 
 
q  Objective: adjust to changes in the available capacity  
q  New state variable per connection: CongestionWindow 

•  limits how much data source has in transit  
 
MaxWin = MIN(CongestionWindow, AdvertisedWindow) 

q  Idea:  
❍  increase CongestionWindow when congestion goes down 
❍  decrease CongestionWindow when congestion goes up       

q  Question: how does the source determine whether or not the 
network is congested?       

q  Answer: a timeout occurs  
❍  timeout signals that a segment was lost  
❍  segments are seldom lost due to transmission error  
❍  lost segment implies congestion 
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AIMD 

q   Algorithm:       
❍  increment CongestionWindow by one segment 

per RTT (linear increase)          
❍  divide CongestionWindow by two whenever a 

timeout occurs (multiplicative decrease) 

q   In practice: increment a little for each 
ACK 
Increment = (MSS x MSS)/CongestionWindow 
CongestionWindow += Increment 
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Sawtooth behavior 

q  Example trace 
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Slow Start 

q Objective: determine the available capacity 
in the first place  
❍ when first starting connection           
❍ when connection recovers after a timeout 

q Idea:  
❍  begin with CongestionWindow = 1 segment  
❍  double CongestionWindow each RTT (increment 

by 1 segment for each ACK) 
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Slow Start (cont'd) 

q  Exponential growth, 
but slower than all in 
one blast 
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TCP Congestion Algorithm 

 On a timeout, half the current window size is 
recorded in ssthresh 

 
if (cwnd < ssthresh) // if we're still doing       
             // slow-start, open window exponentially  

cwnd += 1   
else // otherwise do Congestion Avoidance   
       // linear increase  

cwnd += 1/cwnd 
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q  Example trace 
q  cwnd stays flat if no ACKs are received       
q  Problem: lose up to half a CongestionWindow 's worth 

of data during slow start 

Timeout

Segment transmission times
Transmission times
for retransmitted segments
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Fast Retransmit and Fast Recovery 

q  Problem: coarse-grain 
TCP timeouts lead to 
idle periods       

q  Fast retransmit: use 
duplicate ACKs to 
trigger retransmission 
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q  Long periods during which cwnd stays flat are eliminated       
q  Fast recovery: remove the slow start phase; go directly to half 

the last successful CongestionWindow       
q  TCP Tahoe includes all mechanisms except fast recovery      
q  TCP Reno adds fast recovery 
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Receiver’s advertized  window 

After fast recovery 
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Fast Recovery 

q  After fast retransmit and fast recovery, window 
size is reduced in half 
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Putting it Together: 
TCP Reno 

On every ACK 
  if (window < threshold)        // slow start phase 
      window += 1                    // double window every RTT 
 else                                      // congestion avoidance 
      window += 1 / window     //  increment by 1 every RTT 
 
On timeout 
      threshold = window / 2 
      window = 1 
       
On duplicate acknowledgments 
    threshold = window = window / 2     
                        // fast recovery 


