
1 

Matta @ BUCS - Transport 1-40 

Adaptive Retransmission: 
Jacobson/Karels Algorithm  
q New calculation for average RTT 

❍ Difference = SampleRTT - EstimatedRTT      
❍ EstimatedRTT = EstimatedRTT + (α x Difference)       
❍ Deviation = Deviation + β (|Difference| - Deviation)  

•  where β is recommended to be 0.25       

q Consider variance when setting timeout value     
❍ TimeOut = EstimatedRTT + φ x Deviation       

•  where φ = 4 

Matta @ BUCS - Transport 1-41 

Jacobson/Karels Algorithm 

q Fast computation using integer arithmetic     
❍  scale by α and β, i.e. multiply by 8 (>>3) and 4 (>>2)       
❍  keep SampleRTT and TimeOut unscaled     
❍ Difference = SampleRTT – EstimatedRTT ’  >>3      
❍ EstimatedRTT' = EstimatedRTT' + Difference     
❍  If (Difference < 0) Difference = - Difference       
❍ Deviation' = Deviation' + (Difference  - Deviation'>>2)        
❍ TimeOut = EstimatedRTT ’  >>3 + Deviation’  

Matta @ BUCS - Transport 1-42 

TCP Congestion Control 
Additive Increase/Multiplicative Decrease 
 
q  Objective: adjust to changes in the available capacity  
q  New state variable per connection: CongestionWindow 

•  limits how much data source has in transit  
 
MaxWin = MIN(CongestionWindow, AdvertisedWindow) 

q  Idea:  
❍  increase CongestionWindow when congestion goes down 
❍  decrease CongestionWindow when congestion goes up       

q  Question: how does the source determine whether or not the 
network is congested?       

q  Answer: a timeout occurs  
❍  timeout signals that a segment was lost  
❍  segments are seldom lost due to transmission error  
❍  lost segment implies congestion 



2 

Matta @ BUCS - Transport 1-43 

AIMD 

q   Algorithm:       
❍  increment CongestionWindow by one segment 

per RTT (linear increase)          
❍  divide CongestionWindow by two whenever a 

timeout occurs (multiplicative decrease) 

q   In practice: increment a little for each 
ACK 
Increment = (MSS x MSS)/CongestionWindow 
CongestionWindow += Increment 

Matta @ BUCS - Transport 1-44 

Sawtooth behavior 

q  Example trace 

Matta @ BUCS - Transport 1-45 

Slow Start 

q Objective: determine the available capacity 
in the first place  
❍ when first starting connection           
❍ when connection recovers after a timeout 

q Idea:  
❍  begin with CongestionWindow = 1 segment  
❍  double CongestionWindow each RTT (increment 

by 1 segment for each ACK) 



3 

Matta @ BUCS - Transport 1-46 

Slow Start (cont'd) 

q  Exponential growth, 
but slower than all in 
one blast 

Matta @ BUCS - Transport 1-47 

TCP Congestion Algorithm 

 On a timeout, half the current window size is 
recorded in ssthresh 

 
if (cwnd < ssthresh) // if we're still doing       
             // slow-start, open window exponentially  

cwnd += 1   
else // otherwise do Congestion Avoidance   
       // linear increase  

cwnd += 1/cwnd 

Matta @ BUCS - Transport 1-48 

q  Example trace 
q  cwnd stays flat if no ACKs are received       
q  Problem: lose up to half a CongestionWindow 's worth 

of data during slow start 

Timeout

Segment transmission times
Transmission times
for retransmitted segments



4 

Matta @ BUCS - Transport 1-49 

Fast Retransmit and Fast Recovery 

q  Problem: coarse-grain 
TCP timeouts lead to 
idle periods       

q  Fast retransmit: use 
duplicate ACKs to 
trigger retransmission 

Matta @ BUCS - Transport 1-50 

q  Long periods during which cwnd stays flat are eliminated       
q  Fast recovery: remove the slow start phase; go directly to half 

the last successful CongestionWindow       
q  TCP Tahoe includes all mechanisms except fast recovery      
q  TCP Reno adds fast recovery 

Matta @ BUCS - Transport 1-51 

Receiver’s advertized  window 

After fast recovery 

0 
2 
4 
6 
8 
10 

0 2 4 6 8 10 12 14 
Time (round trips) 

W
in
do

w 
si
ze

 (
se

gm
en

ts
) 

Fast Recovery 

q  After fast retransmit and fast recovery, window 
size is reduced in half 



5 

Matta @ BUCS - Transport 1-52 

Putting it Together: 
TCP Reno 

On every ACK 
  if (window < threshold)        // slow start phase 
      window += 1                    // double window every RTT 
 else                                      // congestion avoidance 
      window += 1 / window     //  increment by 1 every RTT 
 
On timeout 
      threshold = window / 2 
      window = 1 
       
On duplicate acknowledgments 
    threshold = window = window / 2     
                        // fast recovery 


