Introduction to Artificial Intelligence: cs580

Dr. Zoran Duric

Office: Nguyen Engineering Building 4443 email: zduric@cs.gmu.edu Office Hours: Mon./Tue./Wed. 3:00-4:00pm, or by app. URL: http://www.cs.gmu.edu/~zduric/ Course: https://piazza.com/gmu/fall2014/cs580/home

August 26, 2014

1 / 13

- Course overview
- What is AI?
- A brief history
- The state of the art

- lisp
- intelligent agents
- search and game-playing
- logical systems
- learning
- language
- perception
- robotics
- philosophical issues

"[The automation of] activi- ties that we associate with hu- man thinking, activities such as decision-making, problem solving, learning" (Bellman, 1978)	"The study of mental faculties through the use of computational models" (Charniak+McDermott, 1985)
"The study of how to make com-	"The branch of computer science
puters do things at which, at	that is concerned with the au-
the moment, people are better"	tomation of intelligent behavior"
(Rich+Knight, 1991)	(Luger+Stubblefield, 1993)

Views of AI fall into four categories:

Thinking humanly	Thinking rationally
Acting humanly	Acting rationally

Examining these, we will plump for acting rationally (sort of)

Acting humanly: The Turing test

Turing (1950) "Computing machinery and intelligence":

- \diamond "Can machines think?" \rightarrow "Can machines behave intelligently?"
- \diamondsuit Operational test for intelligent behavior: the Imitation Game

- Predicted that by 2000, a machine might have a 30% chance of fooling a lay person for 5 minutes
- \diamond Anticipated all major arguments against AI in following 50 years
- ♦ Suggested major components of AI: knowledge, reasoning, language understanding, learning

Problem: Turing test is not reproducible, <u>constructive</u>, or amenable to mathematical analysis

5 / 13

1960s "cognitive revolution": information-processing psychology replaced prevailing orthodoxy of behaviorism

Requires scientific theories of internal activities of the brain

- What level of abstraction? "Knowledge" or "circuits"?
- How to validate? Requires
 - 1) Predicting and testing behavior of human subjects (top-down) or
 - 2) Direct identification from neurological data (bottom-up)

Both approaches (roughly, Cognitive Science and Cognitive Neuroscience) are now distinct from AI

Normative (or prescriptive) rather than descriptive

Aristotle: what are correct arguments/thought processes?

Several Greek schools developed various forms of <u>logic</u>: <u>notation</u> and <u>rules of derivation</u> for thoughts; may or may not have proceeded to the idea of mechanization

Direct line through mathematics and philosophy to modern AI Problems:

- 1) Not all intelligent behavior is mediated by logical deliberation
- 2) What is the purpose of thinking? What thoughts should I have?

Rational behavior: doing the right thing

The right thing: that which is expected to maximize goal achievement, given the available information

Doesn't necessarily involve thinking—e.g., blinking reflex—but thinking should be in the service of rational action

Aristotle (Nicomachean Ethics):

Every art and every inquiry, and similarly every action and pursuit, is thought to aim at some good An <u>agent</u> is an entity that perceives and acts This course is about designing rational agents Abstractly, an agent is a function from percept histories to actions:

 $f:\mathcal{P}^*\to\mathcal{A}$

For any given class of environments and tasks, we seek the agent (or class of agents) with the best performance Caveat: computational limitations make perfect rationality unachievable \rightarrow design best program for given machine resources

Al prehistory

Philosophy	logic, methods of reasoning, mind as physical system foundations of learning, language, rationality
Mathematics	formal representation and proof, algorithms computation, (un)decidability, (in)tractability probability
Psychology	adaptation, phenomena of perception and motor control, experimental techniques (psychophysics, etc.)
Linguistics	knowledge representation, grammar
Neuroscience	physical substrate for mental activity
Control theory	homeostatic systems, stability
	simple optimal agent designs

Ξ.

<ロ> <同> <同> < 回> < 回>

Potted history of AI

- 1943 McCulloch & Pitts: Boolean circuit model of brain
- 1950 Turing's "Computing Machinery and Intelligence"
- 1952–69 Look, Ma, no hands!
- 1950s Early AI programs, including Samuel's checkers program, Newell & Simon's Logic Theorist, Gelernter's Geometry Engine
- 1956 Dartmouth meeting: "Artificial Intelligence" adopted
- 1965 Robinson's complete algorithm for logical reasoning
- 1966–74 Al discovers computational complexity Neural network research almost disappears
- 1969–79 Early development of knowledge-based systems

1980–88 Expert systems industry booms

- 1988-93 Expert systems industry busts: "AI Winter"
- 1985–95 Neural networks return to popularity
- 1988– Resurgence of probabilistic and decision-theoretic methods

Rapid increase in technical depth of mainstream AI "Nouvelle AI": ALife, GAs, soft computing

Which of the following can be done at present?

- \diamond Play a decent game of table tennis
- \diamondsuit Drive along a curving mountain road
- \diamondsuit Drive in the center of Cairo
- $\diamondsuit\,$ Play a decent game of bridge
- \diamondsuit Discover and prove a new mathematical theorem
- \diamondsuit Write an intentionally funny story
- \diamondsuit Give competent legal advice in a specialized area of law
- \diamondsuit Translate spoken English into spoken Swedish in real time