Symbolic Programming

& Symbols: +, -, 1, 2 etc.

¢ Symbolic expressions: (+ 1 2), (+ (* 3 4) 2)

¢ Symbolic programs are programs that manipulate symbolic
expressions.

¢ Symbolic manipulation: you do it all the time; now you'll write
programs to do it.

Dr. Zoran Duric () Symbolic Programming August 26, 2014 1/89

Example

Logical rules can be represented as symbolic expressions of the form,
‘antecedent’ implies ‘consequent’.

The following rule states that the relation of ‘being inside something is
transitive, 'x is inside y and y is inside z' implies ‘X is inside z'.
In lisp notation, we would represent this rule as

(SETF rule ‘(implies (and (inside x y)

(inside y z))
(inside x z)))

Dr. Zoran Duric () Symbolic Programming August 26, 2014 2/89

Manipulating symbolic expressions

(first rule) ;7 The expression is a rule.
;; (FIRST RULE) — IMPLIES
(second rule) ;; The antecedent of the rule.
;; (SECOND RULE)— (AND (INSIDE X Y) (INSIDE Y Z))
(third rule) ;; The consequent of the rule.
;; (THIRD RULE) — (INSIDE X Z)
(first (second rule)) ;» The antecedent is a conjunction.
 (FIRST (SECOND RULE)) — AND
(second (second rule)) ;; The first conjunct of the antecedent.

; (SECOND (SECOND RULE)) — (INSIDE X Y)

Dr. Zoran Duric () Symbolic Programming August 26, 2014 3/89

Lisp and Common Lisp

What are you looking for in a programming language?
@ primitive data types: strings, numbers, arrays
@ operators: +, -, *, /, etc.
o flow of control: if, or, and, while, for

@ input/output: file handling, loading, compiling programs

Dr. Zoran Duric ISymbolic Programmin, August 26, 2014 4 /89
v g g

Lisp has all of this and more.
o developed by John McCarthy at MIT
@ second oldest programming language still in use (FORTRAN is oldest)
o specifically designed for symbolic programming
We use a dialect of Lisp called Common Lisp.
@ Common Lisp is the standard dialect

We use a subset of Common Lisp.

Dr. Zoran Duric () Symbolic Programming August 26, 2014 5 /89

Basic Data Types and Syntax

Numbers: 1, 2, 2.72, 3.14, 2/3 (integers, floating point, rationals)
Strings: "abc”, "FOQ", "this is also a string”

Characters:
- characters: ab,...zAB,....Z201.2,...9,_-+*
- alpha characters: ab,...,.z,AB,...Z
- numeric characters: 0,1,2,...,9

Symbols:

sequence of characters including one or more alpha characters
its actually more complicated than this but this will suffice

Dr. Zoran Duric () Symbolic Programming August 26, 2014 6 /89

Examples

foo, my-foo, your_foo, 1foo, foo2, FOO, FOO2
Lisp programs and data are represented by expressions.
Expressions - (inductive definition)

@ any instance of a primitive data type: numbers, strings, symbols

@ a list of zero or more expressions

Dr. Zoran Duric () Symbolic Programming

August 26, 2014 7/89

List
@ open paren “("
@ zero or more Lisp objects separated by white space

@ close paren “)"

Examples
1, "foo", BAR (primitive data types)
(), (1), (1 "foo" BAR) (flat list structures)

(1 (1 "foo” BAR) biz 3.14) (nested list structure)

Dr. Zoran Duric ISymbolic Programmin, August 26, 2014 8 /89
g g

Comment character ;'
Lisp ‘ignores’ anything to the right of a comment character.

Lisp is case insensitive with regard to symbols.
FOOQO, Foo, foo, fOO designate the same symbol, but
"FOQ”, "Foo", "foo", "fOQ" designate different strings.

Dr. Zoran Duric ISymbolic Programmin, August 26, 2014 9 /89
g g

Interacting with the Lisp Interpreter

Instead of
1. Write program
2. Compile program
3. Execute program

you can simply type expressions to the Lisp ‘interpreter.’

EVAL compiles, and executes symbolic expressions interpreted as
programs.

The READ-EVAL-PRINT loop reads, EVALs, and prints the result of
executing symbolic expressions.

Instances of simple data types EVALuate to themselves.
"string”
3.14
t
nil
I e s b o'ic Programming August 26, 2014 10 / 89

sym ;; Would cause an error if typed to the interpreter.
., Interpreter errors look like
;> sym
;; Error: The symbol SYM has no global value

EVAL expression

— expression is a string
return the expression
— expression is a number
return the expression
— expression is a symbol
look up the value of the expression

You will learn how symbols get values later

Dr. Zoran Duric () Symbolic Programming August 26, 2014 11 /89

Invoking Functions (Procedures) in Lisp

Function names are symbols: +, -, * sort, merge, concatenate

Lisp uses prefix notation (function argumenty ...argument,)
(+12) ;; +is the function, 1 and 2 are the arguments
(+123) ;; + takes any number of arguments

What happens when EVAL encounters a list?

Lists (with the exception of special forms) are assumed to signal the

invocation of a function.

APPLY handles function invocation

Dr. Zoran Duric () Symbolic Programming August 26, 2014

12 / 89

EVAL expression

— expression is a string or a number
return the expression

— expression is a symbol
look up the value of the expression

— it is of the form (function_name expression; ... expressiony,)
APPLY function_name to expression; ...expression,

Dr. Zoran Duric () Symbolic Programming August 26, 2014 13 /89

APPLY function_name to expression; ...expression,,

— EVAL expression; — result;

EVAL expression,, — result,
— function_name better have a definition; look it up!
the definition for function_name should look something like
function_name formal_parameter; ... formal_parameter,
expression involving formal_parameter; ...formal_parameter,
— substitute result; for formal_parameter; in the expression
— EVAL the resulting expression

Dr. Zoran Duric () Symbolic Programming August 26, 2014 14 / 89

Example

function name: WEIRD
formal parameters: X1 X2 X3
definition: X2

> (WEIRD 1 "one” 1.0)
EVAL (WEIRD 1 "one” 1.0)
APPLY WEIRD to 1 "one” 1.0
EVAL1 — 1

EVAL "one” — "one”

EVAL 1.0 — 1.0

substitute 1 for X1

substitute "one" for X2
substitute 1.0 for X3

EVAL "one”

Dr. Zoran Duric () Symbolic Programming August 26, 2014 15 / 89

> (WEIRD "1st arg 1st call”
(weird " 1st arg 2nd call”
"2nd arg 2nd call”
(weird " 1st arg 3rd call”
"2nd arg 3rd call”
"3rd arg 3rd call"))
"3rd arg 1st call”)
"2nd arg 2nd call”

Dr. Zoran Duric () Symbolic Programming August 26, 2014 16 / 89

(+(*(+12)3)(/122)

+M*H+1 ;; Indenting helps to make nested
2) ;; function invocation clearer.
3)
(/12 ;; What is the order of evaluation
2)) ;; in this nested list expression?

+ (x (+12) 3) (/12 2)) [9]

/ \
(x (+12) 3) [5] (/ 12 2) [8]
/ \ /\
(+12) [3] 3 [4] 12 [6] 2 [7]
/\
1 [1] 2 [2]

Dr. Zoran Duric () Symbolic Programming August 26, 2014 17 / 89

Defining Functions (Procedures) in Lisp

(defun function_name list_of_formal_parameters function_definition)

The function_name is a symbol.
The formal_parameters are symbols.
The function_definition is one or more expressions.

Examples

(defun weird (x y z) y)
1> function name
71 list of three formal parameters
1 function definition consisting of one expression

Dr. Zoran Duric () Symbolic Programming August 26, 2014 18 / 89

Examples of Functions

(defun square (x) (* x x))

(defun hypotenuse (a b)
(sqrt (+ (square a)

(square b))))

How would these functions appear in a text file?

Dr. Zoran Duric () Symbolic Programming

August 26, 2014 19 / 89

Functions Documented

;; HYPOTENUSE takes two arguments corresponding
;; to the length of the two legs of a right triangle and returns
;; length of the hypotenuse of the triangle.

(defun hypotenuse (a b)
: SQRT is a built-in function that
;; computes the square root of a number.
(sqrt (+ (square a)

(square b))))

;1 SQUARE computes the square of its single argument.
(defun square (x)

(*xx))

Dr. Zoran Duric () Symbolic Programming August 26, 2014 20 / 89

Boolean Functions and Predicates

In Lisp, NIL is boolean false and any expression that evaluates to
anything other than NIL is interpreted as boolean true.

nil

T is the default boolean true. T evaluates to itself.
t

Boolean predicates return T or NIL.

(oddp 3)

(evenp 3)

(<23)

(=12)

Dr. Zoran Duric () Symbolic Programming August 26, 2014 21 /89

Boolean Functions and Predicates

Boolean functions return non-NIL or NIL

An OR expression evaluates to non-NIL if at least one of its arguments

must evaluate to non-NIL.
(or t nil)

Degenerate case of no arguments: (or)

An AND expression evaluates to non-NIL if All of its arguments must

evaluate to non-NIL.
(and t nil)

Degenerate case of no arguments: (and)

A NOT expression evaluates to non-NIL if its only argument evaluates to
NIL.
(not t)

Any expression can be interpreted as a boolean value.
(and 3.14 "this string is interpreted as boolean true'’)

Dr. Zoran Duric () Symbolic Programming August 26, 2014 22 /89

Conditional Statements and Flow of Control

Any expression can be used as a test in a conditional statement.

Simple conditional statements

(if test_expression consequent_expression alternative_expression)

Formatted differently using automatic indentation.
(if test_expression
consequent_expression
alternative_expression)

Dr. Zoran Duric () Symbolic Programming August 26, 2014 23 /89

Examples

o

(if t "consequent” "alternative”)

v

(if nil "consequent” "alternative”)

You do not need to include the alternative.

(if t "consequent”)

The ‘default’ alternative is NIL.

(if nil " consequent”)

Dr. Zoran Duric ISymbolic Programmin, August 26, 2014 24 / 89
v g g

General CONDitional statement
(cond conditional_clause; ... conditional_clause)

Conditional clause
(test_expression expressiony . . .expression,)

Examples

(cond ((and t nil) 1)
((or (not t)) 2)
((and) 3))

(cond (t nil))

(if t nil)

(defun classify (x)
(cond ((= x 0) "zero”)
((evenp x) "even”)
((oddp x) "odd”)))
I e s b o'ic Programming August 26, 2014 25 / 89

Examples (cont.)

(defun classify_again (x)
(cond ((= x 0) "zero”)
((evenp x) "even”)
(t "odd"”))) ;; Good programming practice!

(classify_again 0)

(defun classify_once_more (x)
(cond ((= x 0) "waste of time” "zero”
((evenp x) "who cares” "even”)
(t (+ x x) "what a waste” "odd")))

(classify_once_more 2)

Dr. Zoran Duric () Symbolic Programming August 26, 2014 26 / 89

Examples (cont.)

(defun classify_for_the_last_time (x)
(cond ((= x 0) (princ "so far our lisp is pure”) "zero”
((evenp x) (princ "side effects simplify coding”) "even”)
(t (+ x x) (princ "side effects complicate understanding”)

"0dd")))

(classify_for_the_last_time 3)

Dr. Zoran Duric () Symbolic Programming August 26, 2014 27 / 89

Recursive functions

Recursion works by reducing problems to simpler problems and then
combining the results.

(defun raise (x n)

(if (=n0) ;> We can handle this case since x° is just 1.
1

(* x :; Reduce the problem using x" = x % x" 1.

(raise x (-n 1)))))

Dr. Zoran Duric () Symbolic Programming August 26, 2014 28 / 89

Example

Order Level
call RAISE 3 2 first time 1
call RAISE 3 1 second time 2
call RAISE 3 0 third time 3

return 1 from RAISE
return 3 from RAISE
return 9 from RAISE

from the third call
from the second call
from the first call

Dr. Zoran Duric () Symbolic Programming

August 26, 2014

29 /89

APPLY and EVAL work together recursively

Order Level
call EVAL (+ (* 2 3) 4) first time 1
call APPLY + with (* 2 3) and 4
call EVAL (* 2 3) second time 2
call APPLY * with 2 and 3
call EVAL 2 third time 3
return 2 from EVAL by the third call
call EVAL 3 fourth time 3

return 3 from EVAL
return 6 from APPLY

by the fourth call

Dr. Zoran Duric () Symbolic Programming

August 26, 2014

30/ 89

Evaluating Functions in Files

> (load "one.lisp”)

or just

> (load "one”)

if the extension is " .lisp”.

Symbolic Programming August 26, 2014 31/89

Symbols can be assigned Values

The global environment is just a big table that EVAL uses to look up or
change the value of symbols.

There are other environments beside the global environment.
SETF changes values of symbols in environments.
Changing the value of a symbol is one example of a side effect.

Assign the symbol FOO the value 1 in the global environment
(SETF foo 1)

(SETF bar 2)
(SETF baz (+ foo bar))

Dr. Zoran Duric () Symbolic Programming August 26, 2014 32 /89

Symbols assigned values in the global environment are
global variables

(SETF sym 3)
(defun double (x) (+ x x))
(double sym)

We use the terms ‘variable’ and ‘symbol’ interchangeably.
Global variables can be referenced inside function definitions.
(SETF factor 3)

(defun scale (x) (* x factor))
(scale sym)

From a structured programming perspective, global variables are
discouraged.

Dr. Zoran Duric () Symbolic Programming August 26, 2014 33 /89

Function Invocation Reuvisited

New environments are created during function invocation.

O O 0 @
0. O

—

(defun local (x)
(SETF x (+x 1))

(* xx))

In the following example, the symbol X is assigned 2 in the global
environment prior to invoking LOCAL on (+ X 1).

(SETF x 2)

Symbolic Programming August 26, 2014 34 /89

Function Invocation Revisited (cont.)

In APPLYing LOCAL to (+ X 1), the single argument expression (+ X 1)
EVALuates to 3.

Before EVALuating the definition of LOCAL, APPLY creates a new
environment that points to the global environment. In this new
environment, the formal parameter X is assigned the value 3 of the
argument expression.

In looking up the value of a symbol while EVALuating the definition of
LOCAL, EVAL looks first in the new environment and, if it can't find the
symbol listed there, then it looks in the global environment.

(local (+x 1))

In general, function invocation builds a sequence of environments that
EVAL searches through.

Dr. Zoran Duric () Symbolic Programming August 26, 2014 35 /89

Reconsider the roles of EVAL and APPLY

EVAL expression in ENV

— expression is a string
return the expression
— expression is a number
return the expression
— expression is a symbol
look up the value of expression in ENV
— expression is a special form
do something special!
— expression has form
(function_name arg_expression; .. .arg_expression,)
APPLY function_name to arg_expression; ...arg_expression,
in ENV

Dr. Zoran Duric () Symbolic Programming August 26, 2014 36 / 89

Reconsider the roles of EVAL and APPLY (cont.)

Note that now that we have side effects, order of evaluation is important.
Now it makes sense for COND clauses to have more than one expression
besides the test and for function definitions to consist of more than one

expression.
(SETF x 1) (SETF x (+ x x)) (SETF x (* xx)) ;; x — 4
(SETF x 1) (SETF x (*xx)) (SETF x (+ x x)) ;; x = 2

Dr. Zoran Duric () Symbolic Programming August 26, 2014 37 /89

Reconsider the roles of EVAL and APPLY (cont.)

APPLY function_name to
arg_expression;. . . arg_expression, in ENV

— evaluate the arguments in left to right order
— EVAL arg_expression; in ENV — arg_result;
— EVAL arg_expression,, in ENV — arg_result,
— look up the definition of function_name:
function_name formal_parameter; ... formal_parameter,
definition = def_expressiony ... def_expression,
— create a new environment ENV' in which for each i
formal_parameter; is assigned the value arg_result;
— evaluate the expressions in the definition in left to right order
— EVAL def_expression; in ENV' — def_result;
— EVAL def_expression,, in ENV' — def_result,
— return def_result,,

Dr. Zoran Duric () Symbolic Programming August 26, 2014 38 /89

Question: How is ENV' constructed?

Environments can be described as sequences (linked lists) of tables where
each table assigns symbols to values.

Each function is associated with (maintains a pointer to) the environment
that was in place at the time the function was defined. In many cases, this
is just the global environment, but there are exceptions as you will soon
see.

ENV' is constructed by creating a new table in which the symbols
corresponding to formal parameters are assigned the values of the
arguments. This table then points to the environment associated with the
function.

APPLY creates a new environment from the environment associated with
the function being applied.

Dr. Zoran Duric () Symbolic Programming August 26, 2014 39 /89

Environments created during recursive function invocation.

EEEEEEE
| D)

(defun raise (x n)
(if g: n 0)

(* x (raise x (-n 1)))))

> (raise 3 2)

)t

Dr. Zoran Duric () Symbolic Programming

August 26, 2014

40 / 89

Local Variables

As noted above, you can change the value of symbols in environments

In the following function definition, the formal parameters X and Y are
treated as variables whose values are determined locally with respect to
the function in which the formal parameters are introduced.

(defun sqrt-sum-squares (x y)
(SETF x (* x x))

(SETFy (*yy))
(sqrt (+ x y)))

Dr. Zoran Duric () Symbolic Programming August 26, 2014 41 / 89

You can also introduce additional local variables using LET

LET is a special form meaning it handled specially by EVAL.

(let ((vary var_expression;y) ... (var, expression,)) body_expression;
... body_expressiony,)

(let ((x (+12)))
(sqrt x))

(let (vary ...varp)
body_expression; . ..body_expressionp,)

(let (x)
(SETF x (+12))
(sart x))

(defun sqrt-sum-squares-let (x y)
(let ((p (*xx)) (a (*y ¥))
(sart (+ P q)))))

O o'« Prosramming August 26,2014 42 / 89

LET statements improve readability

LET statements are not strictly necessary but they can dramatically
improve the readability of code.

Environments created using nested LET statements.

R ERAAHE

Symbolic Programming August 26, 2014 43 / 89

Example of nested LET statements

(let ((x 1))
(let ((x 2))
(let ((x 3))
(princ x))
(princ x))
(princ x))

Note that the scope of local variables is determined lexically by the text
and specifically by the nesting of expressions.

Dr. Zoran Duric () Symbolic Programming August 26, 2014 44 / 89

Functions with Local State

Environments persist over time. State information (local memory) for a
specific function or set of functions.

(let ((sum 0))
(defun give (x)
(SETF sum (- sum x)))
(defun take (x)
(SETF sum (4 sum x)))
(defun report ()

sum))
> (take 5) > (take 10)
> (report)
> (give 7) > (report)

Symbolic Programming August 26, 2014 45 / 89

Functions as Arguments

FUNCTION tells EVAL to interpret its single argument as a function.
FUNCTION does not evaluate its single argument.

(SETF foo (function oddp))

FUNCALL takes a FUNCTION and zero or more arguments for that
function and applies the function to the arguments.

(funcall foo 1)
(funcall (function +) 1 2)

There is a convenient abbreviation for FUNCTION.

(funcall #'+ 1 2) J
Symbolic Programming August 26, 2014 46 / 89

What is FUNCALL good for?

Generic functions add flexibility.

(defun generic-function (x y test)
(if (funcall test x y)
”do something positive”
"do something negative”))

(generic-function 1 2 #'<)

There are lots of generic functions built into Common Lisp.
(sort '(13254) #'<)
Ignore the (1 3 2 5 4) for the time being.
(sort (1325 4) #">)

Dr. Zoran Duric () Symbolic Programming August 26, 2014

47 / 89

Lambda Functions (or what's in a name?)

LAMBDA specifies a function without giving it a name.
(SETF foo #'(lambda (x) (* x x)))
(funcall foo 3)

(funcall #'(lambda (x y) (+ xy)) 2 3)

LAMBDA functions are convenient for specifying arguments to GENERIC
functions.
(sort '(13254)
#'(lambda (x y) (< (mod x 3) (mod y 3))))

O o' Prosramming August 26,2014 48 / 89

Lambda can have memory

Lambda functions can have local memory just like named functions.

(defun spawn (x)
#'(lambda (request)
(cond ((= 1 request) (SETF x (+ x 1)))
((= 2 request) (SETF x (- x 1)))

(tx))))
(SETF spawnl (spawn 10) spawn2 (spawn 0))

(funcall spawnl 1)
(funcall spawnl 1)
(funcall spawn2 2)
(funcall spawn2 2)
(funcall spawnl 0)
(funcall spawn2 0)

Symbolic Programming August 26, 2014 49 / 89

Referring to Symbols Instead of their Values

QUOTE causes EVAL to suspend evaluation.

(quote foo)

Quote works for arbitrary expressions not just symbols.

(quote (foo bar))

There is a convenient abbreviation for QUOTE.
'foo

'(foo bar)

Dr. Zoran Duric () Symbolic Programming August 26, 2014 50 / 89

Building Lists and Referring to List Elements

Build a list with LIST.

(SETF sym (list 1 2 3 4))

Refer to its components with FIRST, SECOND, REST, etc.
(first sym)
(second sym)
(rest sym)
LIST, FIRST, REST, etc provide a convenient abstraction for pointers. In

fact, you don't have to know much at all about pointers to do list
manipulation in Lisp.

Dr. Zoran Duric () Symbolic Programming August 26, 2014 51 /89

Put together a list with pieces of other lists

(SETF new (list 7 sym))

What if you want a list that looks just like SYM but has 7 for its first
element and you want to use the REST of SYM?

Use CONS.

(cons 7 (rest sym))

If you want a list L such that (FIRST L) = X and (REST L) =Y then
(CONS X Y) does the trick.

(cons 7 ())

Dr. Zoran Duric () Symbolic Programming August 26, 2014 52 / 89

Example

Here is a simple (but not particularly useful) recursive function.
(defun sanitize-list (x)
(if (null x)

X
(cons ‘element (sanitize-list (rest x)))))

(sanitize-list (1 2 3))

(CONS 1 2) is perfectly legal, but it isn't a list. For the time being assume
that we only use CONS to construct lists.

What about nested lists?

Dr. Zoran Duric () Symbolic Programming August 26, 2014 53 / 89

Nested lists correspond to trees

(1 (23 &) (567))

/ | \
/ | \
/ | \

/ | \

1 (2 3 (4)) (56 7)
/1 N\ / 1\
/o \ /1 N\
2 3 (4) b 6 7

\
4

Dr. Zoran Duric () Symbolic Programming

Each nonterminal node
in the tree is a list.

The children of a node
corresponding to a list
are the elements of the
list.

August 26, 2014 54 / 89

How would you SANITIZE a tree?

(defun sanitize-tree (x)
(cond ((null x) x)

;; No more children.

((not (listp x)) 'element)

;; Terminal node.

(t (cons (sanitize-tree (first x))
;; Break the problem down into two subproblems.
(sanitize-tree (rest x))))))

(sanitize-tree (1 2 (3 4) ((3))))

Dr. Zoran Duric () Symbolic Programming August 26, 2014 55 / 89

EQUAL determines structural equality

(equal (list 1 2) (cons 1 (cons 2 nil)))
Is there another kind of equality?

Given (SETF X (LIST 1 2)) and (SETF Y (LIST 1 2)) what is the
difference between X and Y?

What's the different between (list 1 2) and (1 2)?

It could be that you don’t need to know!

Dr. Zoran Duric () Symbolic Programming August 26, 2014 56 / 89

List Structures in Memory

CONS creates dotted pairs also called cons cells.

(SETF pair (cons 1 2))

CONSP checks for dotted paits.
(consp pair)

CAR and CDR are the archaic names for FIRST and REST
(car pair)
(cdr pair)

Dr. Zoran Duric () Symbolic Programming August 26, 2014 57 / 89

EQ compares memory locations

EQ checks to see if two pointers (memory locations) are equivalent.
(eq (list 12) (list 12))
(SETF point pair)
(eq point pair)

Integers point to unique locations in memory.

(eq11)
(SETF one 1)
(eq 1 one)

Floating numbers are not uniquely represented.
(eq 1.0 1.0) J

Symbolic Programming August 26, 2014 58 / 89

Destructive Modification of List Structures
SETF allows us to modify structures in memory.
The first argument to SETF must reference a location in memory.

Change the first element of the pair from 1 to 3.
(setf (first pair) 3)

Create a nested list structure.
(SETF nest (list 1 2 (list 3 4) 5))

Change the first element of the embedded list from 3 to 7.
(setf (first (third nest)) 7)

Symbolic Programming August 26, 2014 59 / 89

Why would we destructively modify memory?

To maintain consistency in data structures that share memory.

(SETF mom '(person (name Lynn) (status employed)))
(SETF dad '(person (name Fred) (status employed)))
(SETF relation (list 'married mom dad))

(setf (second (third dad)) 'retired)

dad

relation

Symbolic Programming August 26, 2014 60 / 89

Difference between list and quote can be critical

(defun mem1 ()
(let ((x (list 1 2))) x))

(defun mem2 ()
(let ((x '(12))) x))

(SETF xmem1 (mem1))
(setf (first xmem1) 3)
(SETF xmem2 (mem2))
(setf (first xmem2) 3)
(mem1)

(mem2)
Symbolic Programming August 26, 2014 61 / 89

Predicates and Builtin Lisp Processing Functions

(SETF x (list 1 2 3))
(SETF y (list 4 5))

LAST returns the last CONS cell in an expression.

(last x) 5 (3)

(defun alt_last (x)

(if (consp (rest x))
(alt_last (rest x)) x))

(alt_last x)

Symbolic Programming August 26, 2014 62 / 89

APPEND two or more lists together

APPEND uses new CONS cells.

(append x y)

X

(defun alt_append (x y)
(if (null x)
y
(cons (first x)

(alt_append (rest x) y))))

(alt_append x y)

O o' Prosramming August 26,2014 63 / 89

NCONC (destructive append)

NCONC is like APPEND except that it modifies structures in memory.

NCONC does not use any new cons cells.

(nconc x y)
X

(defun alt_nconc (x y)
(setf (rest (last x)) y) x)

(alt_nconc x y)

Symbolic Programming August 26, 2014 64 / 89

MEMBER

If X is an element of Y then MEMBER returns the list corresponding
to that sublist of Y starting with X, otherwise MEMBER returns NIL.

(member 1 '(2314))

(defun alt_member (x y)
(cond ((null y) nil)
((eq x (first y)) y)
(t (alt_-member x (rest y)))))

(alt-member 1 (231 4))

O o' Prosramming August 26,2014 65 / 89

Check if X is EQ to Y or any subpart of Y

(defun subexpressionp (x y)
(cond ((eq x y) t)
((not (consp y)) nil)
((subexpressionp x (first y)) t)

((subexpressionp x (rest y)) t)

(t nil)))

(SETF z (list 1 2 (list 3 4 (list 5)) 6))

(subexpressionp 5 z) s T

This is a typical function.

Dr. Zoran Duric () Symbolic Programming August 26, 2014 66 / 89

An alternate definition of SUBEXPRESSIONP

(defun alt_subexpressionp (x y)
(or (eq x y)
(and (consp y)
(or (alt_subexpressionp x (first y))

(alt_subexpressionp x (rest y))))))

(alt_subexpressionp 4 z)

Symbolic Programming August 26, 2014 67 / 89

Functions with Optional Arguments

(member '(34) '((12)(34)(56)))
(member (3 4) '((12) (34) (56)) :test # 'equal)
(member '(34) '((12) (34) (56))

;test #'(lambda (x y)

(= (+ (first x) (second x))
(+ (first y) (second y)))))

(member '(34) '((12) (34) (56))
:test #'(lambda (x y)

(= (apply #'+ x) (apply #'+ y))))

August 26, 2014 68 / 89

Data Abstraction

A data abstraction for input/output pairs.

Constructor for PAIRs.
(defun make-PAIR (input output) (list 'PAIR input output))

Type tester for pairs.
(defun is-PAIR (x) (and (listp x) (eq "PAIR (first x))))

Access for PAIRs.

(defun PAIR-input (pair) (second pair))
(defun PAIR-output (pair) (third pair))

Modifying PAIRs.

(defun set-PAIR-input (pair new) (setf (second pair) new))
(defun set-PAIR-output (pair new) (setf (third pair) new))

.

Symbolic Programming August 26, 2014 69 / 89

Using the data abstraction

(SETF pairs (list (make-PAIR 3 8)
(make-PAIR 2 4)
(make-PAIR 3 1)
(make-PAIR 4 16)))

(defun monotonic_increasingp (pairs)
(cond ((null pairs) t)
((> (PAIR-input (first pairs))
(PAIR-output (first pairs))) nil)
(t (monotonic_increasingp (rest pairs)))))

(monotonic_increasingp pairs) ;» NIL

Dr. Zoran Duric () Symbolic Programming August 26, 2014 70 / 89

Using the data abstraction (cont.)

(SETF increasing (list (make-PAIR 1 2)
(make-PAIR 2 3)
(make-PAIR 3 4)
(make-PAIR 4 5)))

(monotonic_increasingp increasing) T

Dr. Zoran Duric () Symbolic Programming August 26, 2014 71/ 89

Using the data abstraction (cont.)

(defun funapply (input fun)
(cond ((null fun) nil)
((= input (PAIR-input (first fun)))
(PAIR-output (first fun)))
(t (funapply input (rest fun)))))

(funapply 2 increasing) 03

(defun alt_funapply (input fun)
(let ((pairs (member input fun

:test #'(lambda (x y) (= x (PAIR-input y))))))
(if pairs

(PAIR-output (first pairs)))))

(alt_funapply 2 increasing) i3
Symbolic Programming August 26, 2014 72 / 89

Mapping Functions

MAPCAR
(mapcar #'first '((12) (34) (56)))
(mapcar #'(lambda (x y) (list x y))

'(02468)
(13579))

MAPCAN (splice the results together using NCONC)

(mapcan #'(lambda (x) (if (oddp x) (list x) nil))
(1234567809))

O o' Prosramming August 26,2014 73 /89

Mapping Functions (cont.)

EVERY
(every #'oddp '(1357))

SOME
(some #'evenp (12 3))

APPLY
(apply #'+ (12 3))
(apply # '+

(mapcar #'(lambda (x) (if (oddp x) x 0))
(1234567))

Symbolic Programming August 26, 2014 74 / 89

Alternative Forms of lteration

DO for general iteration

The general form is

(do index_variable_specification
(end_test result_expression)
body)

where index_variable_specification is a list specs of the form
(step_variable initial_value step_value)

Symbolic Programming August 26, 2014 75 / 89

Alternative Forms of Iteration (cont.)

(do ((i 0 (+ i 1)) (nums nil))
((= i 10) nums)
(SETF nums (cons (random 1.0) nums)))

We could have done everything in the variable specs.
Notice the body of the DO in this case is empty.

(do ((i 0 (+i1))

(nums nil (cons (random 1.0) nums)))

((= i 10) nums))

Dr. Zoran Duric ISymbolic Programmin, August 26, 2014 76 / 89
v g g

Alternative Forms of Iteration (cont.)

DOLIST for iteration over lists
(dolist (x (12 3 4))
(princ x))

DOTIMES for iterating i = 1 to n

(dotimes (i 10)
(princ i))

Which form of iteration should you use?

Which ever one you want, but you should practice using the less familiar
methods. In particular, we expect you to be able to understand code
written using recursion and mapping functions.

Symbolic Programming August 26, 2014 77 / 89

Tracing and Stepping Functions

(defun raise (x n)
(if g: n0)

(* x (raise x (-n 1)))))

Tell Lisp to TRACE the function RAISE.

(trace raise)
(raise 3 2)

O o'« Prosramming August 26,2014 78 / 89

Tracing and Stepping Functions (cont.)

Tell Lisp to stop tracing the function RAISE.

(untrace raise)
(raise 3 1)

STEP a function

Use :n to step through evaluation. :h lists options.
(step (raise 3 2))

Symbolic Programming August 26, 2014 79 / 89

Association Lists

An association list associates pairs of expressions.

((name Lynn) (age 29) (profession lawyer) (status employed))

ASSOC
(assoc 'b '((a1) (b2)(c3)))

(SETF features '((name Lynn)
(profession lawyer)
(status employed)))

(assoc 'status features)

T o' Prosramming August 26,2014 80 / 89

FIND is more general than ASSOC

(find 'b '(a b c))

(find 'b '((a 1) (b 2) (c 3))
:test #'(lambda (x y) (eq x (cary))))

(SETF mom ’(person (name Lynn) (status employed)))
(SETF dad '(person (name Fred) (status employed)))
(SETF parents (list mom dad))

(find 'Fred parents

:test #'(lambda (x y)
(eq x (second (assoc 'name (rest y))))))

Dr. Zoran Duric () Symbolic Programming August 26, 2014 81 /89

Writing your own READ-EVAL-PRINT Loop

(defun alt_read_eval_print ()

(format t " ~%my prompt > ")
(format t "~% A" (alt_eval (read)))
(alt_read_eval_print))

Symbolic Programming August 26, 2014 82 /89

let ((history ()) (max 3))
(defun alt_eval (expression)

(if (and (listp expression)
(eq (first expression) 'h)
(integerp (second expression)))
(if (and (>= (second expression) 0)
(< (second expression) max))
(eval (nth (second expression) history))
"No such history expression!”)
(progn (SETF history (cons expression history))
(if (> (length history) max)
(setf (rest (nthcdr (- max 1) history)) nil))
(eval expression)))))

PROGN specifies a sequence of expressions as a block; PROGN
returns the value of the last expresion in the sequence.

Dr. Zoran Duric () Symbolic Programming August 26, 2014 83 /89

Search

(defun srch (nodes goal next insert)
(let ((visited nil))
;; add the predecessor to each node in nodes
(SETF nodes (mapcar #'(lambda(x) (list x nil)) nodes))
(loop
;; if there are no more nodes to visit or visitedmax. # of nodes,
;; return NIL as failure signal and the number of visited nodes.
(if (or (null nodes) (>= (length visited) *visited_max*))
(return (list nil nil (length visited))))
;; if goal has been reached, return T as success signal,
;; the solution path, and the number of visited nodes.
(if (funcall goal (first (first nodes)))
(return (list t (return-path (first nodes) visited)
(+ 1 (length visited)))))
;; else, add first node to visited, put its children on the list & iterate
(SETF visited (cons (first nodes) visited))
(SETF nodes (funcall insert (funcall next (first (first nodes)))
(rest nodes)
visited))
)

Dr. Zoran Duric () Symbolic Programming August 26, 2014

84 / 89

Insertion

;; eql-vis checks if the first elements of the two pairs are equalp

(defun eql-vis (x y)
(equalp (first x) (first y)))

; dfs insertion puts new chidren on the front of the list

(defun dfs (children nodes visited)
(append (remove-if #'(lambda (x)
(or (member x visited :test #'eql-vis)
(member x nodes :test #'eql-vis)))
children)
nodes))

Dr. Zoran Duric ISymbolic Programmin, August 26, 2014 85/ 89
g g

next & goal

(defun children (graph)
#'(lambda (node)
(mapcar #'(lambda(x) (list x node))
(second (assoc node graph)))))

(defun find-node (goal-node)
#'(lambda (node) (equalp node goal-node)))

(defun print-list (1)
(dolist (elt I t) (format t " “A~%" elt)))

(SETF graphl '((a (beg)) (b (cdf)) (cnil)
(d (c f)) (e (b)) (f nil)
(g (hi)) (h(bd)) (i(beh))))

Dr. Zoran Duric () Symbolic Programming August 26, 2014 86 / 89

Using SRCH function

(SETF *visited_max* 100)

(SETF *init-pos* 'a)

(SETF *final-pos* 'f)

(SETF result (srch (list *init-pos*) (find-node *final-pos*)
(children graphl) #'dfs))

(format t " ~%Graph search - dfs: "A~%" (first result))

(format t " ~%lnitial position: "A~%" *init-pos*)

(format t "Final position: “A~(format t " ~%Visited A nodes ~%"

(third result))

(format t "Path:"%")

(print-list (second result))

(format t "~ %"%")

Dr. Zoran Duric () Symbolic Programming August 26, 2014 87 /89

Results

CL-USER 66 > (load "srch.lsp")

; Loading text file srch.lsp
#P"/home/u2/zduric/cs580/srch.1lsp"

CL-USER 67 > (load "proj.skel")

; Loading text file proj.skel
#P"/home/u2/zduric/cs580/proj.skel"

Dr. Zoran Duric () Symbolic Programming

August 26, 2014 88 / 89

Results (cont.)

CL-USER 68 > (proj)
Graph search - dfs: T

Initial position: A
Final position: F

Visited 5 nodes
Path:

A

B

F

Dr. Zoran Duric () Symbolic Programming August 26, 2014 89 / 89

