
CS 580 1

Problem solving and search

Chapter 3, Sections 1–5

CS 580 2

Outline

♦ Problem-solving agents

♦ Problem types

♦ Problem formulation

♦ Example problems

♦ Basic search algorithms

CS 580 3

Problem-solving agents

Restricted form of general agent:

function Simple-Problem-Solving-Agent(p) returns an action

inputs: p, a percept

static: s, an action sequence, initially empty

state, some description of the current world state

g, a goal, initially null

problem, a problem formulation

state←Update-State(state, p)

if s is empty then

g←Formulate-Goal(state)

problem←Formulate-Problem(state, g)

s← Search(problem)

action←Recommendation(s, state)

s←Remainder(s, state)

return action

Note: this is offline problem solving. Online problem solving involves

acting without complete knowledge of the problem and solution.

CS 580 4

Example: Romania

On holiday in Romania; currently in Arad.
Flight leaves tomorrow from Bucharest

Formulate goal:
be in Bucharest

Formulate problem:
states: various cities
operators: drive between cities

Find solution:
sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest

CS 580 5

Example: Romania

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

CS 580 6

Problem types

Deterministic, accessible =⇒ single-state problem
Deterministic, inaccessible =⇒ multiple-state problem

Nondeterministic, inaccessible =⇒ contingency problem
must use sensors during execution
solution is a tree or policy
often interleave search, execution

Unknown state space =⇒ exploration problem (“online”)

CS 580 7

Example: vacuum world

Single-state, start in #5. Solution??

Multiple-state, start in {1, 2, 3, 4, 5, 6, 7, 8}
e.g., Right goes to {2, 4, 6, 8}. Solution??

Contingency, start in #5

Murphy’s Law: Suck can dirty a clean car-

pet

Local sensing: dirt, location only.

Solution??

1 2

3 4

5 6

7 8

CS 580 8

Single-state problem formulation

A problem is defined by four items:

initial state e.g., “at Arad”

operators (or successor function S(x))
e.g., Arad → Zerind Arad → Sibiu etc.

goal test, can be
explicit, e.g., x = “at Bucharest”
implicit, e.g., NoDirt(x)

path cost (additive)
e.g., sum of distances, number of operators executed, etc.

A solution is a sequence of operators
leading from the initial state to a goal state

CS 580 9

Selecting a state space

Real world is absurdly complex
⇒ state space must be abstracted for problem solving

(Abstract) state = set of real states

(Abstract) operator = complex combination of real actions
e.g., “Arad → Zerind” represents a complex set

of possible routes, detours, rest stops, etc.
For guaranteed realizability, any real state “in Arad”

must get to some real state “in Zerind”

(Abstract) solution =
set of real paths that are solutions in the real world

Each abstract action should be “easier” than the original problem!

CS 580 10

Example: The 8-puzzle

Start State Goal State

2

45

6

7

8

1 2 3

4

67

81

23

45

6

7

81

23

45

6

7

8

5

states??
operators??
goal test??
path cost??

CS 580 11

Example: The 8-puzzle

Start State Goal State

2

45

6

7

8

1 2 3

4

67

81

23

45

6

7

81

23

45

6

7

8

5

states??: integer locations of tiles (ignore intermediate positions)
operators??: move blank left, right, up, down (ignore unjamming
etc.)
goal test??: = goal state (given)
path cost??: 1 per move

[Note: optimal solution of n-Puzzle family is NP-hard]

CS 580 12

Example: vacuum world state space graph

R

L

S S

S S

R

L

R

L

R

L

S

SS

S

L

L

LL R

R

R

R

states??
operators??
goal test??
path cost??

CS 580 13

Example: vacuum world state space graph

R

L

S S

S S

R

L

R

L

R

L

S

SS

S

L

L

LL R

R

R

R

states??: integer dirt and robot locations (ignore dirt amounts)
operators??: Left, Right, Suck

goal test??: no dirt
path cost??: 1 per operator

CS 580 14

Example: robotic assembly

R

RR
P

R R

states??: real-valued coordinates of
robot joint angles
parts of the object to be assembled

operators??: continuous motions of robot joints

goal test??: complete assembly with no robot included!

path cost??: time to execute

CS 580 15

Search algorithms

Basic idea:
offline, simulated exploration of state space
by generating successors of already-explored states

(a.k.a. expanding states)

function General-Search(problem, strategy) returns a solution, or failure

initialize the search tree using the initial state of problem

loop do

if there are no candidates for expansion then return failure

choose a leaf node for expansion according to strategy

if the node contains a goal state

then return the corresponding solution

else expand the node and add the resulting nodes to the search tree

end

CS 580 16

General search example

Arad

CS 580 17

Zerind Sibiu Timisoara

Arad

CS 580 18

Arad Oradea Rimnicu
 VilceaFagaras

Zerind Sibiu Timisoara

Arad

CS 580 19

Sibiu Bucharest

Arad Oradea Rimnicu
 VilceaFagaras

Zerind Sibiu Timisoara

Arad

CS 580 20

Implementation of search algorithms

function General-Search(problem,Queuing-Fn) returns a solution, or failure

nodes←Make-Queue(Make-Node(Initial-State[problem]))

loop do

if nodes is empty then return failure

node←Remove-Front(nodes)

if Goal-Test[problem] applied to State(node) succeeds then return node

nodes←Queuing-Fn(nodes,Expand(node,Operators[problem]))

end

CS 580 21

Implementation contd: states vs. nodes

A state is a (representation of) a physical configuration
A node is a data structure constituting part of a search tree

includes parent, children, depth, path cost g(x)
States do not have parents, children, depth, or path cost!

1

23

45

6

7

81

23

45

6

7

8

State Node

parent

depth = 6

g = 6

children
state

The Expand function creates new nodes, filling in the various
fields and using the Operators (or SuccessorFn) of the problem
to create the corresponding states.

CS 580 22

Search strategies

A strategy is defined by picking the order of node expansion

Strategies are evaluated along the following dimensions:
completeness—does it always find a solution if one exists?
time complexity—number of nodes generated/expanded
space complexity—maximum number of nodes in memory
optimality—does it always find a least-cost solution?

Time and space complexity are measured in terms of
b—maximum branching factor of the search tree
d—depth of the least-cost solution
m—maximum depth of the state space (may be ∞)

CS 580 23

Uninformed search strategies

Uninformed strategies use only the information available
in the problem definition

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening search

CS 580 24

Breadth-first search

Expand shallowest unexpanded node

Implementation:
QueueingFn = put successors at end of queue

Arad

CS 580 25

Zerind Sibiu Timisoara

Arad

CS 580 26

Arad Oradea

Zerind Sibiu Timisoara

Arad

CS 580 27

Arad Oradea Rimnicu
 VilceaFagaras Arad LugojArad Oradea

Zerind Sibiu Timisoara

Arad

CS 580 28

Properties of breadth-first search

Complete??

Time??

Space??

Optimal??

CS 580 29

Properties of breadth-first search

Complete?? Yes (if b is finite)

Time?? 1 + b + b2 + b3 + . . . + bd = O(bd), i.e., exponential in d

Space?? O(bd) (keeps every node in memory)

Optimal?? Yes (if cost = 1 per step); not optimal in general

Space is the big problem; can easily generate nodes at 1MB/sec
so 24hrs = 86GB.

CS 580 30

Romania with step costs in km

Bucharest

Giurgiu

Urziceni

Hirsova

Eforie

Neamt
Oradea

Zerind

Arad

Timisoara

Lugoj
Mehadia

Dobreta
Craiova

Sibiu

Fagaras

Pitesti
Rimnicu Vilcea

Vaslui

Iasi

Straight−line distance
to Bucharest

 0
160
242
161

77
151

241

366

193

178

253
329
80

199

244

380

226

234

374

98

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75
120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

CS 580 31

Uniform-cost search

Expand least-cost unexpanded node

Implementation:
QueueingFn = insert in order of increasing path cost

Arad

CS 580 32

Zerind Sibiu Timisoara

75 140 118

Arad

CS 580 33

Arad Oradea

75 71

Zerind Sibiu Timisoara

75 140 118

Arad

CS 580 34

Arad Lugoj

118 111

Arad Oradea

75 71

Zerind Sibiu Timisoara

75 140 118

Arad

CS 580 35

Properties of uniform-cost search

Complete?? Yes, if step cost ≥ ε

Time?? # of nodes with g ≤ cost of optimal solution

Space?? # of nodes with g ≤ cost of optimal solution

Optimal?? Yes

CS 580 36

Depth-first search

Expand deepest unexpanded node

Implementation:
QueueingFn = insert successors at front of queue

Arad

CS 580 37

Zerind Sibiu Timisoara

Arad

CS 580 38

Arad Oradea

Zerind Sibiu Timisoara

Arad

CS 580 39

Zerind Sibiu Timisoara

Arad Oradea

Zerind Sibiu Timisoara

Arad

I.e., depth-first search can perform infinite cyclic excursions
Need a finite, non-cyclic search space (or repeated-state checking)

CS 580 40

DFS on a depth-3 binary tree

CS 580 41

CS 580 42

CS 580 43

CS 580 44

CS 580 45

DFS on a depth-3 binary tree, contd.

CS 580 46

CS 580 47

CS 580 48

CS 580 49

Properties of depth-first search

Complete??

Time??

Space??

Optimal??

CS 580 50

Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path

⇒ complete in finite spaces

Time?? O(bm): terrible if m is much larger than d

but if solutions are dense, may be much faster than
breadth-first

Space?? O(bm), i.e., linear space!

Optimal?? No

CS 580 51

Depth-limited search

= depth-first search with depth limit l

Implementation:
Nodes at depth l have no successors

CS 580 52

Iterative deepening search

function Iterative-Deepening-Search(problem) returns a solution sequence

inputs: problem, a problem

for depth← 0 to ∞ do

result←Depth-Limited-Search(problem, depth)

if result 6= cutoff then return result

end

CS 580 53

Iterative deepening search l = 0

Arad

CS 580 54

Iterative deepening search l = 1

Arad

CS 580 55

Zerind Sibiu Timisoara

Arad

CS 580 56

Iterative deepening search l = 2

Arad

CS 580 57

Zerind Sibiu Timisoara

Arad

CS 580 58

Arad Oradea

Zerind Sibiu Timisoara

Arad

CS 580 59

Arad Oradea Rimnicu
 VilceaFagarasArad Oradea

Zerind Sibiu Timisoara

Arad

CS 580 60

Arad LugojArad Oradea Rimnicu
 VilceaFagarasArad Oradea

Zerind Sibiu Timisoara

Arad

CS 580 61

Properties of iterative deepening search

Complete??

Time??

Space??

Optimal??

CS 580 62

Properties of iterative deepening search

Complete?? Yes

Time?? (d + 1)b0 + db1 + (d − 1)b2 + . . . + bd = O(bd)

Space?? O(bd)

Optimal?? Yes, if step cost = 1
Can be modified to explore uniform-cost tree

CS 580 63

Summary

Problem formulation usually requires abstracting away real-world
details to define a state space that can feasibly be explored

Variety of uninformed search strategies

Iterative deepening search uses only linear space
and not much more time than other uninformed algorithms

