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Problem solving and search

Chapter 3, Sections 1–5
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Outline

♦ Problem-solving agents

♦ Problem types

♦ Problem formulation

♦ Example problems

♦ Basic search algorithms
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Problem-solving agents

Restricted form of general agent:

function Simple-Problem-Solving-Agent( p) returns an action

inputs: p, a percept

static: s, an action sequence, initially empty

state, some description of the current world state

g, a goal, initially null

problem, a problem formulation

state←Update-State(state, p)

if s is empty then

g←Formulate-Goal(state)

problem←Formulate-Problem(state, g)

s← Search( problem)

action←Recommendation(s, state)

s←Remainder(s, state)

return action

Note: this is offline problem solving. Online problem solving involves

acting without complete knowledge of the problem and solution.
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Example: Romania

On holiday in Romania; currently in Arad.
Flight leaves tomorrow from Bucharest

Formulate goal:
be in Bucharest

Formulate problem:
states: various cities
operators: drive between cities

Find solution:
sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest
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Example: Romania

Giurgiu
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Zerind
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Lugoj
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Dobreta

Craiova

Sibiu Fagaras
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Rimnicu Vilcea

Bucharest
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Problem types

Deterministic, accessible =⇒ single-state problem
Deterministic, inaccessible =⇒ multiple-state problem

Nondeterministic, inaccessible =⇒ contingency problem
must use sensors during execution
solution is a tree or policy
often interleave search, execution

Unknown state space =⇒ exploration problem (“online”)
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Example: vacuum world

Single-state, start in #5. Solution??

Multiple-state, start in {1, 2, 3, 4, 5, 6, 7, 8}
e.g., Right goes to {2, 4, 6, 8}. Solution??

Contingency, start in #5

Murphy’s Law: Suck can dirty a clean car-

pet

Local sensing: dirt, location only.

Solution??

1 2

3 4

5 6

7 8



CS 580 8

Single-state problem formulation

A problem is defined by four items:

initial state e.g., “at Arad”

operators (or successor function S(x))
e.g., Arad → Zerind Arad → Sibiu etc.

goal test, can be
explicit, e.g., x = “at Bucharest”
implicit, e.g., NoDirt(x)

path cost (additive)
e.g., sum of distances, number of operators executed, etc.

A solution is a sequence of operators
leading from the initial state to a goal state
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Selecting a state space

Real world is absurdly complex
⇒ state space must be abstracted for problem solving

(Abstract) state = set of real states

(Abstract) operator = complex combination of real actions
e.g., “Arad → Zerind” represents a complex set

of possible routes, detours, rest stops, etc.
For guaranteed realizability, any real state “in Arad”

must get to some real state “in Zerind”

(Abstract) solution =
set of real paths that are solutions in the real world

Each abstract action should be “easier” than the original problem!
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Example: The 8-puzzle

Start State Goal State
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states??
operators??
goal test??
path cost??
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Example: The 8-puzzle

Start State Goal State

2

45

6

7

8

1 2 3

4

67

81

23

45

6

7

81

23

45

6

7

8

5

states??: integer locations of tiles (ignore intermediate positions)
operators??: move blank left, right, up, down (ignore unjamming
etc.)
goal test??: = goal state (given)
path cost??: 1 per move

[Note: optimal solution of n-Puzzle family is NP-hard]
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Example: vacuum world state space graph
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states??
operators??
goal test??
path cost??
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Example: vacuum world state space graph
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states??: integer dirt and robot locations (ignore dirt amounts)
operators??: Left, Right, Suck

goal test??: no dirt
path cost??: 1 per operator
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Example: robotic assembly

R

RR
P

R R

states??: real-valued coordinates of
robot joint angles
parts of the object to be assembled

operators??: continuous motions of robot joints

goal test??: complete assembly with no robot included!

path cost??: time to execute
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Search algorithms

Basic idea:
offline, simulated exploration of state space
by generating successors of already-explored states

(a.k.a. expanding states)

function General-Search( problem, strategy) returns a solution, or failure

initialize the search tree using the initial state of problem

loop do

if there are no candidates for expansion then return failure

choose a leaf node for expansion according to strategy

if the node contains a goal state

then return the corresponding solution

else expand the node and add the resulting nodes to the search tree

end
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General search example

Arad
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Zerind Sibiu Timisoara

Arad
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Arad Oradea Rimnicu
 VilceaFagaras

Zerind Sibiu Timisoara

Arad
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Sibiu Bucharest

Arad Oradea Rimnicu
 VilceaFagaras

Zerind Sibiu Timisoara

Arad
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Implementation of search algorithms

function General-Search( problem,Queuing-Fn) returns a solution, or failure

nodes←Make-Queue(Make-Node(Initial-State[problem]))

loop do

if nodes is empty then return failure

node←Remove-Front(nodes)

if Goal-Test[problem] applied to State(node) succeeds then return node

nodes←Queuing-Fn(nodes,Expand(node,Operators[problem]))

end
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Implementation contd: states vs. nodes

A state is a (representation of) a physical configuration
A node is a data structure constituting part of a search tree

includes parent, children, depth, path cost g(x)
States do not have parents, children, depth, or path cost!

1

23

45

6

7

81

23

45

6

7

8

State Node

parent

depth = 6

g = 6

children
state

The Expand function creates new nodes, filling in the various
fields and using the Operators (or SuccessorFn) of the problem
to create the corresponding states.
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Search strategies

A strategy is defined by picking the order of node expansion

Strategies are evaluated along the following dimensions:
completeness—does it always find a solution if one exists?
time complexity—number of nodes generated/expanded
space complexity—maximum number of nodes in memory
optimality—does it always find a least-cost solution?

Time and space complexity are measured in terms of
b—maximum branching factor of the search tree
d—depth of the least-cost solution
m—maximum depth of the state space (may be ∞)
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Uninformed search strategies

Uninformed strategies use only the information available
in the problem definition

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening search
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Breadth-first search

Expand shallowest unexpanded node

Implementation:
QueueingFn = put successors at end of queue

Arad
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Zerind Sibiu Timisoara

Arad
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Arad Oradea

Zerind Sibiu Timisoara

Arad
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Arad Oradea Rimnicu
 VilceaFagaras Arad LugojArad Oradea

Zerind Sibiu Timisoara

Arad
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Properties of breadth-first search

Complete??

Time??

Space??

Optimal??
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Properties of breadth-first search

Complete?? Yes (if b is finite)

Time?? 1 + b + b2 + b3 + . . . + bd = O(bd), i.e., exponential in d

Space?? O(bd) (keeps every node in memory)

Optimal?? Yes (if cost = 1 per step); not optimal in general

Space is the big problem; can easily generate nodes at 1MB/sec
so 24hrs = 86GB.
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Romania with step costs in km

Bucharest

Giurgiu

Urziceni

Hirsova

Eforie

Neamt
Oradea

Zerind
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Timisoara

Lugoj
Mehadia

Dobreta
Craiova

Sibiu

Fagaras

Pitesti
Rimnicu Vilcea

Vaslui

Iasi

Straight−line distance
to Bucharest
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Urziceni
Hirsova
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Craiova

Sibiu Fagaras
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Uniform-cost search

Expand least-cost unexpanded node

Implementation:
QueueingFn = insert in order of increasing path cost

Arad



CS 580 32

Zerind Sibiu Timisoara

75 140 118

Arad
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Arad Oradea

75 71

Zerind Sibiu Timisoara

75 140 118

Arad
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Arad Lugoj

118 111

Arad Oradea

75 71

Zerind Sibiu Timisoara

75 140 118

Arad
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Properties of uniform-cost search

Complete?? Yes, if step cost ≥ ε

Time?? # of nodes with g ≤ cost of optimal solution

Space?? # of nodes with g ≤ cost of optimal solution

Optimal?? Yes
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Depth-first search

Expand deepest unexpanded node

Implementation:
QueueingFn = insert successors at front of queue

Arad
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Zerind Sibiu Timisoara

Arad
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Arad Oradea

Zerind Sibiu Timisoara

Arad
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Zerind Sibiu Timisoara

Arad Oradea

Zerind Sibiu Timisoara

Arad

I.e., depth-first search can perform infinite cyclic excursions
Need a finite, non-cyclic search space (or repeated-state checking)
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DFS on a depth-3 binary tree
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DFS on a depth-3 binary tree, contd.
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Properties of depth-first search

Complete??

Time??

Space??

Optimal??
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Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path

⇒ complete in finite spaces

Time?? O(bm): terrible if m is much larger than d

but if solutions are dense, may be much faster than
breadth-first

Space?? O(bm), i.e., linear space!

Optimal?? No
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Depth-limited search

= depth-first search with depth limit l

Implementation:
Nodes at depth l have no successors
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Iterative deepening search

function Iterative-Deepening-Search( problem) returns a solution sequence

inputs: problem, a problem

for depth← 0 to ∞ do

result←Depth-Limited-Search( problem, depth)

if result 6= cutoff then return result

end
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Iterative deepening search l = 0

Arad
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Iterative deepening search l = 1

Arad
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Zerind Sibiu Timisoara

Arad
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Iterative deepening search l = 2

Arad
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Zerind Sibiu Timisoara

Arad
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Arad Oradea

Zerind Sibiu Timisoara

Arad
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Arad Oradea Rimnicu
 VilceaFagarasArad Oradea

Zerind Sibiu Timisoara

Arad
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Arad LugojArad Oradea Rimnicu
 VilceaFagarasArad Oradea

Zerind Sibiu Timisoara

Arad
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Properties of iterative deepening search

Complete??

Time??

Space??

Optimal??
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Properties of iterative deepening search

Complete?? Yes

Time?? (d + 1)b0 + db1 + (d − 1)b2 + . . . + bd = O(bd)

Space?? O(bd)

Optimal?? Yes, if step cost = 1
Can be modified to explore uniform-cost tree
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Summary

Problem formulation usually requires abstracting away real-world
details to define a state space that can feasibly be explored

Variety of uninformed search strategies

Iterative deepening search uses only linear space
and not much more time than other uninformed algorithms


