
Chapter 4: Informed Search Algorithms

Dr. Zoran Duric

September 11, 2014

Dr. Zoran Duric () Chapter 4: Informed Search Algorithms September 11, 2014 1 / 42

Outline

♦ Best-first search
♦ A∗ search
♦ Heuristics
♦ Hill-climbing
♦ Simulated annealing

Dr. Zoran Duric () Chapter 4: Informed Search Algorithms September 11, 2014 2 / 42

Review: Tree search

function Tree-Search(problem, fringe) returns a solution, or failure
fringe← Insert(Make-Node(Initial-State[problem]), fringe)
loop do

if fringe is empty then return failure
node←Remove-Front(fringe)
if Goal-Test[problem] applied to State(node) succeeds return node
fringe← InsertAll(Expand(node,problem), fringe)

A strategy is defined by picking the order of node expansion

Dr. Zoran Duric () Chapter 4: Informed Search Algorithms September 11, 2014 3 / 42

Best-first search

Idea: use an evaluation function for each node
– estimate of “desirability”

⇒ Expand most desirable unexpanded node

Implementation:
fringe is a queue sorted in decreasing order of desirability

Special cases:
greedy search
A∗ search

Dr. Zoran Duric () Chapter 4: Informed Search Algorithms September 11, 2014 4 / 42

Romania with step costs in km

Bucharest

Giurgiu

Urziceni

Hirsova

Eforie

Neamt
Oradea

Zerind

Arad

Timisoara

Lugoj
Mehadia

Dobreta
Craiova

Sibiu

Fagaras

Pitesti
Rimnicu Vilcea

Vaslui

Iasi

Straight−line distance
to Bucharest

 0
160
242
161

77
151

241

366

193

178

253
329
80

199

244

380

226

234

374

98

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75
120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Dr. Zoran Duric () Chapter 4: Informed Search Algorithms September 11, 2014 5 / 42

Greedy search

Evaluation function h(n) (heuristic)
= estimate of cost from n to the closest goal

E.g., hSLD(n) = straight-line distance from n to Bucharest
Greedy search expands the node that appears to be closest to goal

Dr. Zoran Duric () Chapter 4: Informed Search Algorithms September 11, 2014 6 / 42

Greedy search example

Arad

366

Dr. Zoran Duric () Chapter 4: Informed Search Algorithms September 11, 2014 7 / 42

Greedy search example

Zerind

Arad

Sibiu Timisoara

253 329 374

Dr. Zoran Duric () Chapter 4: Informed Search Algorithms September 11, 2014 8 / 42

Greedy search example

Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

329 374

366 176 380 193

Dr. Zoran Duric () Chapter 4: Informed Search Algorithms September 11, 2014 9 / 42

Greedy search example

Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

Sibiu Bucharest

329 374

366 380 193

253 0

Dr. Zoran Duric () Chapter 4: Informed Search Algorithms September 11, 2014 10 / 42

Properties of greedy search

Complete??

Dr. Zoran Duric () Chapter 4: Informed Search Algorithms September 11, 2014 11 / 42

Properties of greedy search

Complete?? No–can get stuck in loops, e.g., with Oradea as goal,
Iasi → Neamt → Iasi → Neamt →

Complete in finite space with repeated-state checking
Time??

Dr. Zoran Duric () Chapter 4: Informed Search Algorithms September 11, 2014 12 / 42

Properties of greedy search

Complete?? No–can get stuck in loops, e.g.,
Iasi → Neamt → Iasi → Neamt →

Complete in finite space with repeated-state checking
Time?? O(bm), but a good heuristic can give dramatic improvement
Space??

Dr. Zoran Duric () Chapter 4: Informed Search Algorithms September 11, 2014 13 / 42

Properties of greedy search

Complete?? No–can get stuck in loops, e.g.,
Iasi → Neamt → Iasi → Neamt →

Complete in finite space with repeated-state checking
Time?? O(bm), but a good heuristic can give dramatic improvement
Space?? O(bm)—keeps all nodes in memory
Optimal??

Dr. Zoran Duric () Chapter 4: Informed Search Algorithms September 11, 2014 14 / 42

Properties of greedy search

Complete?? No–can get stuck in loops, e.g.,
Iasi → Neamt → Iasi → Neamt →

Complete in finite space with repeated-state checking
Time?? O(bm), but a good heuristic can give dramatic improvement
Space?? O(bm)—keeps all nodes in memory
Optimal?? No

Dr. Zoran Duric () Chapter 4: Informed Search Algorithms September 11, 2014 15 / 42

A∗ search

Idea: avoid expanding paths that are already expensive
Evaluation function f (n) = g(n) + h(n)
g(n) = cost so far to reach n
h(n) = estimated cost to goal from n
f (n) = estimated total cost of path through n to goal
A∗ search uses an admissible heuristic
i.e., h(n) ≤ h∗(n) where h∗(n) is the true cost from n.
(Also require h(n) ≥ 0, so h(G) = 0 for any goal G .)
E.g., hSLD(n) never overestimates the actual road distance
Theorem: A∗ search is optimal

Dr. Zoran Duric () Chapter 4: Informed Search Algorithms September 11, 2014 16 / 42

A∗ search example

Arad

366=0+366

Dr. Zoran Duric () Chapter 4: Informed Search Algorithms September 11, 2014 17 / 42

A∗ search example

Zerind

Arad

Sibiu Timisoara

447=118+329 449=75+374393=140+253

Dr. Zoran Duric () Chapter 4: Informed Search Algorithms September 11, 2014 18 / 42

A∗ search example

Zerind

Arad

Sibiu

Arad

Timisoara

Rimnicu VilceaFagaras Oradea

447=118+329 449=75+374

646=280+366 413=220+193415=239+176 671=291+380

Dr. Zoran Duric () Chapter 4: Informed Search Algorithms September 11, 2014 19 / 42

A∗ search example

Zerind

Arad

Sibiu

Arad

Timisoara

Fagaras Oradea

447=118+329 449=75+374

646=280+366 415=239+176

Rimnicu Vilcea

Craiova Pitesti Sibiu

526=366+160 553=300+253417=317+100

671=291+380

Dr. Zoran Duric () Chapter 4: Informed Search Algorithms September 11, 2014 20 / 42

A∗ search example

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Rimnicu VilceaFagaras Oradea

Craiova Pitesti Sibiu

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253417=317+100

671=291+380

Dr. Zoran Duric () Chapter 4: Informed Search Algorithms September 11, 2014 21 / 42

A∗ search example

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Rimnicu VilceaFagaras Oradea

Craiova Pitesti Sibiu

Bucharest Craiova Rimnicu Vilcea

418=418+0

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253

615=455+160 607=414+193

671=291+380

Dr. Zoran Duric () Chapter 4: Informed Search Algorithms September 11, 2014 22 / 42

Optimality of A∗ (standard proof)

Suppose some suboptimal goal G2 has been generated and is in the queue.
Let n be an unexpanded node on a shortest path to an optimal goal G1.

G

n

G2

Start

f (G2) = g(G2) since h(G2) = 0

> g(G1) since G2 is suboptimal

≥ f (n) since h is admissible

Since f (G2) > f (n), A∗ will never select G2 for expansion

Dr. Zoran Duric () Chapter 4: Informed Search Algorithms September 11, 2014 23 / 42

Optimality of A∗ (more useful)

Lemma: A∗ expands nodes in order of increasing f value∗

Gradually adds “f -contours” of nodes (cf. breadth-first adds layers)
Contour i has all nodes with f = fi , where fi < fi+1

O

Z

A

T

L

M

D
C

R

F

P

G

B
U

H

E

V

I

N

380

400

420

S

Dr. Zoran Duric () Chapter 4: Informed Search Algorithms September 11, 2014 24 / 42

Properties of A∗

Complete??

Dr. Zoran Duric () Chapter 4: Informed Search Algorithms September 11, 2014 25 / 42

Properties of A∗

Complete?? Yes, unless there are infinitely many nodes with f ≤ f (G)
Time??

Dr. Zoran Duric () Chapter 4: Informed Search Algorithms September 11, 2014 26 / 42

Properties of A∗

Complete?? Yes, unless there are infinitely many nodes with f ≤ f (G)
Time?? Exponential in [relative error in h × length of soln.]
Space??

Dr. Zoran Duric () Chapter 4: Informed Search Algorithms September 11, 2014 27 / 42

Properties of A∗

Complete?? Yes, unless there are infinitely many nodes with f ≤ f (G)
Time?? Exponential in [relative error in h × length of soln.]
Space?? Keeps all nodes in memory
Optimal??

Dr. Zoran Duric () Chapter 4: Informed Search Algorithms September 11, 2014 28 / 42

Properties of A∗

Complete?? Yes, unless there are infinitely many nodes with f ≤ f (G)
Time?? Exponential in [relative error in h × length of soln.]
Space?? Keeps all nodes in memory
Optimal?? Yes—cannot expand fi+1 until fi is finished
A∗ expands all nodes with f (n) < C ∗

A∗ expands some nodes with f (n) = C ∗

A∗ expands no nodes with f (n) > C ∗

Dr. Zoran Duric () Chapter 4: Informed Search Algorithms September 11, 2014 29 / 42

Proof of lemma: Consistency

A heuristic is consistent if

n

c(n,a,n’)

h(n’)

h(n)

G

n’

h(n) ≤ c(n, a, n′) + h(n′)

If h is consistent, we have

f (n′) = g(n′) + h(n′)

= g(n) + c(n, a, n′) + h(n′)

≥ g(n) + h(n)

= f (n)

I.e., f (n) is nondecreasing along any path.

Dr. Zoran Duric () Chapter 4: Informed Search Algorithms September 11, 2014 30 / 42

Admissible heuristics

E.g., for the 8-puzzle:
h1(n) = number of misplaced tiles
h2(n) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

Start State Goal State

2

45

6

7

8

1 2 3

4

67

81

23

45

6

7

81

23

45

6

7

8

5

h1(S) =??
h2(S) =??

Dr. Zoran Duric () Chapter 4: Informed Search Algorithms September 11, 2014 31 / 42

Admissible heuristics

E.g., for the 8-puzzle:
h1(n) = number of misplaced tiles
h2(n) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

Start State Goal State

2

45

6

7

8

1 2 3

4

67

81

23

45

6

7

81

23

45

6

7

8

5

h1(S) =?? 7
h2(S) =?? 4+0+3+3+1+0+2+1 = 14

Dr. Zoran Duric () Chapter 4: Informed Search Algorithms September 11, 2014 32 / 42

Dominance

If h2(n) ≥ h1(n) for all n (both admissible)
then h2 dominates h1 and is better for search
Typical search costs:
d = 14 IDS = 3,473,941 nodes

A∗(h1) = 539 nodes
A∗(h2) = 113 nodes

d = 24 IDS ≈ 54,000,000,000 nodes
A∗(h1) = 39,135 nodes
A∗(h2) = 1,641 nodes

Dr. Zoran Duric () Chapter 4: Informed Search Algorithms September 11, 2014 33 / 42

Relaxed problems

Admissible heuristics can be derived from the exact
solution cost of a relaxed version of the problem
If the rules of the 8-puzzle are relaxed so that a tile can move anywhere,
then h1(n) gives the shortest solution
If the rules are relaxed so that a tile can move to any adjacent square,
then h2(n) gives the shortest solution
Key point: the optimal solution cost of a relaxed problem
is no greater than the optimal solution cost of the real problem

Dr. Zoran Duric () Chapter 4: Informed Search Algorithms September 11, 2014 34 / 42

Relaxed problems contd.

Well-known example: travelling salesperson problem (TSP)
Find the shortest tour visiting all cities exactly once

Minimum spanning tree can be computed in O(n2)
and is a lower bound on the shortest (open) tour

Dr. Zoran Duric () Chapter 4: Informed Search Algorithms September 11, 2014 35 / 42

Iterative improvement algorithms

In many optimization problems, path is irrelevant;
the goal state itself is the solution
Then state space = set of “complete” configurations;

find optimal configuration, e.g., TSP
or, find configuration satisfying constraints, e.g., timetable

In such cases, can use iterative improvement algorithms;
keep a single “current” state, try to improve it
Constant space, suitable for online as well as offline search

Dr. Zoran Duric () Chapter 4: Informed Search Algorithms September 11, 2014 36 / 42

Example: Travelling Salesperson Problem

Start with any complete tour, perform pairwise exchanges

Dr. Zoran Duric () Chapter 4: Informed Search Algorithms September 11, 2014 37 / 42

Example: n-queens

Put n queens on an n × n board with no two queens on the same
row, column, or diagonal
Move a queen to reduce number of conflicts

Dr. Zoran Duric () Chapter 4: Informed Search Algorithms September 11, 2014 38 / 42

Hill-climbing (or gradient ascent/descent)

“Like climbing Everest in thick fog with amnesia”

function Hill-Climbing(problem) returns a state that is a local maximum
inputs: problem, a problem
local variables: current, a node

neighbor, a node

current←Make-Node(Initial-State[problem])
loop do

neighbor← a highest-valued successor of current
if Value[neighbor] < Value[current] then return State[current]
current← neighbor

end

Dr. Zoran Duric () Chapter 4: Informed Search Algorithms September 11, 2014 39 / 42

Hill-climbing contd.

Problem: depending on initial state, can get stuck on local maxima

value

states

global maximum

local maximum

In continuous spaces, problems w/ choosing step size, slow convergence

Dr. Zoran Duric () Chapter 4: Informed Search Algorithms September 11, 2014 40 / 42

Simulated annealing

Idea: escape local maxima by allowing some “bad” moves
but gradually decrease their size and frequency

function Simulated-Annealing(problem, schedule) returns a solution state
inputs: problem, a problem

schedule, a mapping from time to “temperature”
local variables: current, a node

next, a node
T, a “temperature” controlling prob. of downward steps

current←Make-Node(Initial-State[problem])
for t← 1 to ∞ do

T← schedule[t]
if T = 0 then return current
next← a randomly selected successor of current
∆E←Value[next] – Value[current]
if ∆E > 0 then current← next
else current← next only with probability e∆ E/T

Dr. Zoran Duric () Chapter 4: Informed Search Algorithms September 11, 2014 41 / 42

Properties of simulated annealing

At fixed “temperature” T , state occupation probability reaches
Boltzman distribution

p(x) = αe
E(x)
kT

T decreased slowly enough =⇒ always reach best state
Is this necessarily an interesting guarantee??
Devised by Metropolis et al., 1953, for physical process modelling
Widely used in VLSI layout, airline scheduling, etc.

Dr. Zoran Duric () Chapter 4: Informed Search Algorithms September 11, 2014 42 / 42

