‘ Logical Agents.
Chapter 6, AIMA2e Chapter 7 '

-

\Outline I

¢ Knowledge-based agents

< Wumpus world

¢ Logic in general—models and entailment

> Propositional (Boolean) logic

> Equivalence, validity, satisfiability

> Inference rules and theorem proving

-

— forward chaining
— backward chaining
— resolution

/ Knowledge basej

domain—-independent algorithms

Inference engine

Knowledge base —=——domain-specific content

Knowledge base = set sentences aformallanguage

Declarativeapproach to building an agent (or other system):
TELL it what it needs to know

Then it can Ak itself what to do—answers should follow from the KB

Agents can be viewed at tlikmowledge level
l.e., what they know, regardless of how implemented

Or at theimplementation level
l.e., data structures in KB and algorithms that manipulate

\ them /

/ ‘A simple knowledge-based age:' \

function KB-AGENT(percepj returns anaction
static: KB, a knowledge base
t, a counter, initially O, indicating time

TELL(KB, MAKE-PERCEPFSENTENCE(percept,})
action«— Ask(KB, MAKE-ACTION-QUERY(t))
TELL(KB, MAKE-ACTION-SENTENCE(action t))
t—t+1

return action

The agent must be able to.
Represent states, actions, etc.
Incorporate new percepts
Update internal representations of the world
Deduce hidden properties of the world

\ Deduce appropriate actions /

-

-

‘Wumpus World PEAS description'

Performance measure

gold +1000, death -1000
-1 per step, -10 for using the arrow

Environment

Squares adjacent to wumpus are smelly 4
Squares adjacent to pit are breezy ,
Glitter iff gold is in the same square
Shooting kills wumpus if you are facing it 2
Shooting uses up the only arrow
Grabbing picks up gold if in same square1
Releasing drops the gold in same square

Sensor8reeze, Glitter, Smell

ActuatorsLeft turn, Right turn,

Forward, Grab, Release, Shoot

~

S SSSS
Stench >

\\>
3
i

PIT

—
"~ Breeze —
S~
§5§§§5
Stench >
N

~/Gold\ \~

PIT

'S SSSS
Stench >

\\>
5
&

START

PIT

1

5

‘Wumpus world characterization I

Observabl@?

‘Wumpus world characterization I

Observabl&? No—only local perception

Deterministi®?

-

Wumpus world characterization I

Observabl&? No—only local perception

Deterministi@? Yes—outcomes exactly specified

Episodi®?

-

‘Wumpus world characterization I

Observabl&? No—only local perception

Deterministi@? Yes—outcomes exactly specified

Episodi®@? No—sequential at the level of actions

Stati??

-

‘Wumpus world characterization I

Observabl&? No—only local perception

Deterministi@? Yes—outcomes exactly specified

Episodi®@? No—sequential at the level of actions

Static?? Yes—Wumpus and Pits do not move

Discret&?

-

10

-

‘Wumpus world characterization I

Observable?No—only local perception

Deterministi@? Yes—outcomes exactly specified

Episodi®? No—sequential at the level of actions

Static?? Yes—Wumpus and Pits do not move

Discret&®?Yes

Single-ageri?

-

11

-

‘Wumpus world characterization I

Observable?No—only local perception

Deterministi@? Yes—outcomes exactly specified

Episodi®? No—sequential at the level of actions

Static?? Yes—Wumpus and Pits do not move

Discret&®?Yes

Single-ageri?? Yes—Wumpus is essentially a natural feature

-

12

Exploring a wumpus world I

OK

OK

OK

13

Exploring a wumpus world I

OK OK

14

-

Exploring a wumpus world I

~

15

-

Exploring a wumpus world I

~

16

-

Exploring a wumpus world I

~

17

-

Exploring a wumpus world

18

-

Exploring a wumpus world

19

-

Exploring a wumpus world I

~

20

P?
OK P?
i
Al
|| ok|B oK
[A]——={A] i

Other tight spots'

Breeze in (1,2) and (2,1)
— Nno safe actions

Assuming pits uniformly distributed,
(2,2) has pit w/ prob 0.86, vs. 0.31

Smellin (1,1)
=- cannot move

Can use a strategy ebercion
shoot straight ahead
wumpus was there> dead=- safe
wumpus wasn’t there> safe

21

-

Logic in general'

Logicsare formal languages for representing information
such that conclusions can be drawn

Syntaxdefines the sentences in the language

Semanticslefine the “meaning” of sentences;
l.e., defingtruth of a sentence in a world

E.g., the language of arithmetic
x + 2 > yis asentence;2 + y > IS not a sentence
x + 2 > yis true Iff the number + 2 is no less than the number

x + 2 > yistrue in aworld where =7, y=1
x + 2 > yis false in a world where =0, y==6

-

/

22

/ Entaillment I

Entailmentmeans that one thinigllows fromanother:

KB E «

Knowledge basd(B entails sentence
If and only if
« IS true in all worlds wherd({ B Is true

E.g., the KB containing “the Giants won” and “the Reds won”
entails “Either the Giants won or the Reds won”

E.g.,.x+y=4entallsd=x +y

Entailment is a relationship between sentences fyatay
that is based osemantics

\Note: brains processyntax(of some sort)

23

4 N
\ I\/Iodels'

Logicians typically think in terms amodels which are formally
structured worlds with respect to which truth can be evaluated

We saym is a model ofa sentence if « Is true inm
M («) is the set of all models of

ThenKB = «aifandonly if M(KB) C M («)
E.g. K B = Giants won and Reds won
a = Glants won

-

24

‘ Entailment in the wumpus world I

Situation after detecting nothing in [1,1],
moving right, breeze in [2,1]

Consider possible models for ?s Al . [A]

assuming only pits

3 Boolean choices=- 8 possible models

-

25

Wumpus models

26

‘Wumpus models'

2 3

\KB = wumpus-world rules + observations

27

/ ‘Wumpus models' \

2 3

K B =wumpus-world rules + observations
Ql =“[1,2] is safe”, K B = a1, proved bymodel checking /

28

‘Wumpus models'

2 3

\KB = wumpus-world rules + observations

29

/ ‘Wumpus models'

— — — — — — —
— —
—

~
~
~
2 \
N
N
:\:
@
2 3
//
-
_-—
”
— 77 ol®
=~ @
2 3

K B =wumpus-world rules + observations

Qz =“[2,2] is safe”, K B |~ as

30

/ \ Inference. \

KB F; a = sentencex can be derived fronik B by procedure

Consequences df B are a haystacky is a needle.
Entailment = needle in haystack; inference = finding it

Soundness; is sound if
wheneverK B F; «, itis also true thalk B = «

Completeness is complete if
wheneverK B = «, itis also true thatk B F; «

Preview: we will define a logic (first-order logic) which is expressive
enough to say almost anything of interest, and for which there exists a
sound and complete inference procedure.

That is, the procedure will answer any guestion whose answer follows

\from what is known by thé{ B. /

31

-

‘ Propositional logic: Syntax'

Propositional logic is the simplest logic—illustrates basic ideas
The proposition symbol#;, P, etc are sentences

If S'Is a sentence;.S is a sentencenggation

If S7 andS; are sentences$,; A S, Is a sentencecpnjunctior)

If 57 andS; are sentences; V S, is a sentencedfsjunctior)

If S; andS; are sentences; = .55 Is a sentencarqplication)

If S7 andS, are sentences,; < S5 IS a sentencebfconditiona)

-

32

/ Propositional logic: Semantici \

Each model specifies true/false for each proposition symbol
E.Q. P> P> o P34

true true false

(With these symboils, 8 possible models, can be enumerated automatically.)

Rules for evaluating truth with respect to a model

=S istrue iff S s false
S1 NSy istrue iff S1 Is trueand So IS true
S1V.Sy istrue iff S1 IS trueor So IS true
S1 = Sz istrueiff S1 s falseor So IS true
l.e., s false iff S1 Is trueand So is false

S1 < Sy istrueiff S; = S, istrueand S, = S; istrue

Simple recursive process evaluates an arbitrary sentence, e.g.,

!Pl,g A (P22 V P3 1) =true A (false V true) =true A true =true /

33

Truth tables for Connectivesl

P Q -P | PNQ | PVQ | P=Q | P&Q
false | false || true | false | false true true
false | true true | false true true false
true | false || false | false true false false
true true false | true true true true

34

-

‘Wumpus world sentencej

Let P; ; be true if there is a pit ifi, j].
Let B; ; be true if there is a breeze |n j].

“Pits cause breezes in adjacent squares”

-

35

‘Wumpus world sentencej

Let P; ; be true if there is a pit if, j].
Let B; ; be true if there is a breeze |i j].

“Pits cause breezes in adjacent squares”

Bii1 & (PiaV FP;)
Bs1 & (PiiVPyoVPs)

“A square Is breezyf and only ifthere is an adjacent pit”

_ /

36

\ Truth tables for inference '

Bi1 B 1 P11 Py 2 P> 1 P> o P31 KB a1

false | false | false | false | false | false | false false true
false | false | false | false | false | false | true false true
false | true false | false | false | false | false false true
false | true false | false | false | false | true true true
false | true false | false | false true false true true
false | true false | false | false true true true true
false | true false | false | true false | false false true
true true true true true true true false false

37

/ Inference by enumeration'

Depth-first enumeration of all models is sound and complete

~

function TT-ENTAILS? (KB,) returns true or false

symbols— a list of the proposition symbols iKB anda
return TT-CHECK-ALL (KB, a, symbols[])

function TT-CHECK-ALL (KB, «,, symbolsmode) returns true or false

if EMPTY?(Symbol$then
if PL-TRUE? (KB, mode) then return PL-TRUE? (o, mode)
else returntrue

else do
P «— FIRST(symbol$; rest«— REST(symbol$
return TT-CHECK-ALL (KB, o, rest EXTEND(P, true, model) and

TT-CHECK-ALL (KB, o, rest EXTEND(P, false, model)

\0(2") for n symbols; problem is co-NP-complete

38

-

Logical equivalencﬂ

Two sentences ategically equivalentff true in same models:

a=/f

(anB)

(aV B)
((anB) A7)
(Vv B) V)
—(—a)

(a = B)

(a = B)

(o & B)
(A B)
—(aV B)
(@an(BV7))
(aV(BA7))

ifand only if o = g andg E «

(B A «) commutativity ofA

(B V «a) commutativity ofv

(a A (BAN7y)) associativity ofA
(aV (B V~)) associativity ofv
« double-negation elimination
contraposition
implication elimination
AN(B =)

de Morgan

biconditional elimination

de Morgan
(N B)V(axA7y))
(Vv B) A (V7))

distributivity of A overv
distributivity of vV overA

/

39

‘Validity and satisfiability I

A sentence ivalid if it is true in all models,
e.g.. True, AVv-A, A=A (AN(A= B)) = B

Validity is connected to inference via tiieduction Theorem
KB E «aifandonly if (KB = «) is valid
A sentence isatisfiablaf it is true in somemodel

e.g.,AV B, C

A sentence isinsatisfiablef it is true in no models
e.g.,AN—-A

Satisfiability is connected to inference via the following:
KB = «ifand only if (K B A —«) is unsatisfiable
l.e., provea by reductio ad absurdum

/

40

/ Proof methods. \

Proof methods divide into (roughly) two kinds:

Application of inference rules
— Legitimate (sound) generation of new sentences from old
— Proof= a sequence of inference rule applications
Can use inference rules as operators in a standard search alg.
— Typically require translation of sentences intocaamal form

Model checking
truth table enumeration (always exponentiahin
Improved backtracking, e.g., Davis—Putnam-Logemann-Loveland
heuristic search in model space (sound but incomplete)
/

e.g., min-conflicts-like hill-climbing algorithms

-

41

‘ Forward and backward chaining I

Horn Form(restricted)
KB = conjunctionof Horn clauses
Horn clause =
> proposition symbol; or
& (conjunction of symbols)=- symbol
Eg.CAN(B = A)AN(CAND = B)

Modus Ponengfor Horn Form): complete for Horn KBs

A1y...,0n, 041/\"'/\0471:>ﬁ
b

Can be used witforward chainingor backward chaining
These algorithms are very natural and ruhimear time

_ /

42

-

Forward chaining I

|dea: fire any rule whose premises are satisfied irnAflig

add its conclusion to th& B, until query is found
P = Q

LANM = P

BANL = M

ANP = L M
ANB = L L

A

B

Q

43

4 N

Forward chaining algorithm I

function PL-FC-ENTAILS? (KB, g) returns true or false
local variables count a table, indexed by clause, initially the number of premises
inferred, a table, indexed by symbol, each entry initidiyse
agendaa list of symbols, initially the symbols known to be true

while agendas not emptydo
p «— Popr(agenda
unlessinferredp] do
inferred p] < true
for each Horn clausec in whose premise appearslo
decrementoun{c]
if counfc] = 0then do
if HEAD[c] = g then return true
PUsH(HEAD][c], agenda
return false

44

-

Forward chaining example'

~

-

Forward chaining example'

~

46

-

Forward chaining example'

~

-

Forward chalnlng example

-

Forward chaining example'

~

-

Forward chaining example'

~

-

Forward chaining example'

~

-

Forward chaining example'

~

Proof of completenesj

FC derives every atomic sentence that is entailed1sy

1. FC reaches faixed pointwhere no new atomic sentences are derived
2. Consider the final state as a modelassigning true/false to symbols

3. Every clause in the origindt B Is true inm
Proof. Suppose aclausg A ... A axp = bis false inm
Thenay; A ... A ag IS true inm andb is false inm
Therefore the algorithm has not reached a fixed point!

4. Hencemn Is a model ofK B

5. If KB = q, qis true ineverymodel of K B, includingm

_ /

53

-

Backward chaining I

ldea: work backwards from the quegy
to proveq by BC,
check ifq is known already, or
prove by BC all premises of some rule concluding

Avoid loops: check if new subgoal is already on the goal stack

Avoid repeated work: check if new subgoal
1) has already been proved true, or
2) has already failed

-

54

-

‘ Backward chaining example'

~

-

‘ Backward chaining example'

~

-

‘ Backward chaining example'

~

/ ‘ Backward chaining example' \

-

‘ Backward chaining example'

~

Ing example

Backward chaini

-

‘ Backward chaining example'

~

/ ‘ Backward chaining example' \

-

‘ Backward chaining example'

j
[b

N

~

-

‘ Backward chaining example'

~

-

‘ Backward chaining example'

~

Forward vs. backward chaining'

FC isdata-drivencf. automatic, unconscious processing,
e.g., object recognition, routine decisions

May do lots of work that is irrelevant to the goal

BC is goal-driven appropriate for problem-solving,
e.g., Where are my keys? How do I get into a PhD program?

Complexity of BC can benuch lesghan linear in size of KB

_ /

66

-

\ResohMon.

Conjunctive Normal Forld{CNF—universal)
conjunctionof disjunctionsof literals

E.Q..(AV-B)A (B

clauses
vV =C'V —=D)

Resolutionnference rule (for CNF): complete for propositional logic

04N -V, miV---Vmy

61v---\/€7;_1\/&+1\/---\/€k\/m1\/---\/mj_1\/mj+1\/---\/mn

where/; andm; are complementary literals. E.g.,

P13V P, = 9

Resolution I1s sound and com

-

P 3

plete for propositional Iogié]—

P?

P

B OK

1
||OK

/

67

/ Conversion to CNFI

Bi1< (Pi2V Pyy)

1. Eliminate<, replacinga < g with (a = G) A (8 = «).
(Bi1 = (PiaVP1)AN((Pi2V Pa1) = Bia)
2. Eliminate = , replacinga = 3 with —a V £.
(mB11VPiaoVPy)AN(—(Pi2V Py1)V Bi1)
3. Move— inwards using de Morgan'’s rules and double-negation:
(#B11 VP oV Po1)AN((mPiaoAN—Py1)V Bi1)
4. Apply distributivity law (v over A) and flatten:

-

(mB11VPiaVPy) NP2V B11)N(—FP1V By)

68

/ ‘ Resolution aIgorithmI

Proof by contradiction, i.e., showW B A -« unsatisfiable

function PL-RESOLUTIONKB, «) returns true or false

clauses— the set of clauses in the CNF representatio&®f A —«
Nnew«— { }
loop do
for each C, C; in clausesdo
resolvents— PL-REsoOLVEHC;, C))
if resolventontains the empty clauskeen return true
new<«— new U resolvents
If new C clauses then return false
clauses— clauses U new

69

-

Resolution examplﬂ

KB =(Bi1< (Pi2VPy1)ANBiga=-P

! 2,1\/ Bl,l

! Bl,l\/ Pl,z\/ P2,1

e o=

B Bl,l\/ Pl,z\/ Bl,l

P,

[
2V Pz,l\/ B I:)1,2

o 1,2\/ B1,1

B Bl,l

A\

! Bl,l\/ Pz,l\/ Bl,l

-

Pl,z\/ Pz,l\/ B P2,1

_'P2,1

! P1,2

70

/ Summary' \

Logical agents applinferenceto aknowledge base
to derive new information and make decisions

Basic concepts of logic:
—syntax formal structure osentences
— semanticstruth of sentences wrnodels
— entailment necessary truth of one sentence given another
— inference deriving sentences from other sentences
—soundessderivations produce only entailed sentences
—completenesdderivations can produce all entailed sentences

Wumpus world requires the ability to represent partial and negated
iInformation, reason by cases, etc.

Forward, backward chaining are linear-time, complete for Horn clause!
Resolution is complete for propositional logic

Qropositional logic lacks expressive power /

71

